On Local Fixing

  • Michael König
  • Roger Wattenhofer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8304)

Abstract

In this paper we look at the difficulty of fixing solutions of classic network problems. We study local changes in graphs (edge resp. node insertion resp. deletion), and network problems (e.g. maximal independent set, minimum vertex cover, spanning trees, shortest paths). A change/problem combination is locally fixable if an existing solution of a problem can be fixed in constant time in case of a local change in the graph. We analyze a variety of well-studied classic network problems with different characteristics.

Keywords

Local Fixing Fault Tolerance Graph Problems Complexity Classes and Maximal Independent Set 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afek, Y., Kutten, S., Yung, M.: Memory-efficient self stabilizing protocols for general networks. In: van Leeuwen, J., Santoro, N. (eds.) WDAG 1990. LNCS, vol. 486, pp. 15–28. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  2. 2.
    Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for the maximal independent set problem. Journal of Algorithms 7(4), 567–583 (1986)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Awerbuch, B.: Optimal distributed algorithms for minimum weight spanning tree, counting, leader election, and related problems. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 230–240. ACM (1987)Google Scholar
  4. 4.
    Awerbuch, B., Sipser, M.: Dynamic networks are as fast as static networks. In: Proc. of 29th Annual Symposium on Foundations of Computer Science (FOCS), pp. 206–219. IEEE (1988)Google Scholar
  5. 5.
    Awerbuch, B., Varghese, G.: Distributed program checking: a paradigm for building self-stabilizing distributed protocols. In: Proc. of 32nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 258–267. IEEE (1991)Google Scholar
  6. 6.
    Dijkstra, E.W.: Self-stabilization in spite of distributed control. Manuscript EWD391 (October 1973)Google Scholar
  7. 7.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communications of the ACM 17(11), 643–644 (1974)Google Scholar
  8. 8.
    Dolev, S.: Self-stabilization. The MIT Press (2000)Google Scholar
  9. 9.
    Elkin, M.: Unconditional lower bounds on the time-approximation tradeoffs for the distributed minimum spanning tree problem. In: Proc. of the 36th ACM Symposium on Theory of Computing (STOC), Chicago, USA, pp. 331–340 (2004)Google Scholar
  10. 10.
    Frischknecht, S., Holzer, S., Wattenhofer, R.: Networks cannot compute their diameter in sublinear time. In: Proc. of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1150–1162. SIAM (2012)Google Scholar
  11. 11.
    Hayes, T.P., Saia, J., Trehan, A.: The forgiving graph: a distributed data structure for low stretch under adversarial attack. Distributed Computing 25(4), 261–278 (2012)CrossRefMATHGoogle Scholar
  12. 12.
    Israeli, A., Itai, A.: A fast and simple randomized parallel algorithm for maximal matching. Information Processing Letters 22(2), 77–80 (1986)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In: Proc. of the 23rd ACM Symposium on the Principles of Distributed Computing (PODC), pp. 300–309. ACM (2004)Google Scholar
  14. 14.
    Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation: Lower and upper bounds. CoRR, abs/1011.5470 (2010)Google Scholar
  15. 15.
    Kuhn, F., Oshman, R.: Dynamic networks: Models and algorithms. ACM SIGACT News 42(1), 82–96 (2011)CrossRefGoogle Scholar
  16. 16.
    Kuhn, F., Wattenhofer, R.: Constant-Time Distributed Dominating Set Approximation. Springer Journal for Distributed Computing 17(4) (May 2005)Google Scholar
  17. 17.
    Kutten, S., Peleg, D.: Tight fault locality. In: Proc. of 36th Annual Symposium on Foundations of Computer Science (FOCS), pp. 704–713. IEEE (1995)Google Scholar
  18. 18.
    Lenzen, C., Suomela, J., Wattenhofer, R.: Local algorithms: Self-stabilization on speed. In: Proc. of 11th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), Lyon, France (November 2009)Google Scholar
  19. 19.
    Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing 21(1), 193–201 (1992)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Lotker, Z., Patt-Shamir, B., Pettie, S.: Improved distributed approximate matching. In: Proc. of the 20th Annual Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 129–136. ACM (2008)Google Scholar
  21. 21.
    Lotker, Z., Patt-Shamir, B., Rosen, A.: Distributed approximate matching. In: Proc. of the 26th Annual ACM Symposium on Principles of Distributed Computing (PODC), Portland, Oregon, USA, pp. 167–174. ACM (2007)Google Scholar
  22. 22.
    Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM Journal on Computing 15, 1036–1053 (1986)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Naor, M., Stockmeyer, L.: What can be computed locally? In: Proc. of the 25th Annual ACM Symposium on Theory of Computing (STOC), San Diego, California, USA, pp. 184–193. ACM (1993)Google Scholar
  24. 24.
    Pandurangan, G., Trehan, A.: Xheal: localized self-healing using expanders. In: Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pp. 301–310. ACM (2011)Google Scholar
  25. 25.
    Peleg, D., Rubinovich, V.: A near-tight lower bound on the time complexity of distributed minimum-weight spanning tree construction. SIAM Journal on Computing 30(5), 1427–1442 (2001)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sarma, A.D., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed approximation. Arxiv preprint arXiv:1011.3049 (2010)Google Scholar
  27. 27.
    Suomela, J.: Survey of local algorithms. ACM Computing Surveys (2011)Google Scholar
  28. 28.
    Wattenhofer, M., Wattenhofer, R.: Distributed weighted matching. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 335–348. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Michael König
    • 1
  • Roger Wattenhofer
    • 1
  1. 1.Computer Engineering and Networks LaboratoryETH ZurichZurichSwitzerland

Personalised recommendations