Lattice Methods for Algebraic Modular Forms on Classical Groups

  • Matthew GreenbergEmail author
  • John Voight
Part of the Contributions in Mathematical and Computational Sciences book series (CMCS, volume 6)


We use Kneser’s neighbor method and isometry testing for lattices due to Plesken and Souveigner to compute systems of Hecke eigenvalues associated to definite forms of classical reductive algebraic groups.


Modular Form Hermitian Form Elementary Divisor Theta Series Automorphic Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [Bor91]
    A. Borel, Linear Algebraic Groups, 2nd enlarged edn. Graduate Texts in Math., vol. 126 (Springer, New York, 1991) CrossRefzbMATHGoogle Scholar
  2. [BCP97]
    W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symb. Comput. 24(3–4), 235–265 (1997) CrossRefzbMATHMathSciNetGoogle Scholar
  3. [Chi]
    S. Chisholm, Lattice methods for algebraic modular forms on quaternionic unitary groups. Ph.D. thesis, University of Calgary. Anticipated 2013 Google Scholar
  4. [Coh93]
    H. Cohen, A Course in Computational Algebraic Number Theory. Graduate Texts in Math., vol. 138 (Springer, Berlin, 1993) CrossRefzbMATHGoogle Scholar
  5. [Coh00]
    H. Cohen, Advanced Topics in Computational Algebraic Number Theory. Graduate Texts in Math., vol. 193 (Springer, Berlin, 2000) CrossRefGoogle Scholar
  6. [CMT04]
    A.M. Cohen, S.H. Murray, D.E. Taylor, Computing in groups of Lie type. Math. Comput. 73(247), 1477–1498 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  7. [CD09]
    C. Cunningham, L. Dembélé, Computation of genus 2 Hilbert-Siegel modular forms on \(\mathbb {Q}(\sqrt{5})\) via the Jacquet-Langlands correspondence. Exp. Math. 18(3), 337–345 (2009) CrossRefzbMATHGoogle Scholar
  8. [dGr01]
    W.A. de Graaf, Constructing representations of split semisimple Lie algebras. J. Pure Appl. Algebra 164(1–2), 87–107 (2001). Effective methods in algebraic geometry (Bath, 2000) CrossRefzbMATHMathSciNetGoogle Scholar
  9. [Dem07]
    L. Dembélé, Quaternionic Manin symbols, Brandt matrices and Hilbert modular forms. Math. Comput. 76(258), 1039–1057 (2007) CrossRefzbMATHGoogle Scholar
  10. [DD08]
    L. Dembélé, S. Donnelly, Computing Hilbert modular forms over fields with nontrivial class group, in Algorithmic Number Theory. Lecture Notes in Comput. Sci., vol. 5011, Banff, 2008 (Springer, Berlin, 2008), pp. 371–386 CrossRefGoogle Scholar
  11. [DV]
    L. Dembélé, J. Voight, Explicit methods for Hilbert modular forms, in Elliptic Curves, Hilbert Modular Forms and Galois Deformations (Birkhäuser, Basel, 2013), pp. 135–198 CrossRefGoogle Scholar
  12. [Eic52]
    M. Eichler, Quadratische Formen und orthogonale Gruppen (Springer, Berlin, 1952) CrossRefzbMATHGoogle Scholar
  13. [Eic73]
    M. Eichler, The basis problem for modular forms and the traces of the Hecke operators, in Modular Functions of One Variable, I. Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972. Lecture Notes in Math., vol. 320 (Springer, Berlin, 1973), pp. 75–151 CrossRefGoogle Scholar
  14. [Eic75]
    M. Eichler, Correction to: “The basis problem for modular forms and the traces of the Hecke operators”, in Modular Functions of One Variable, IV, Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972. Lecture Notes in Math., vol. 476 (Springer, Berlin, 1975), pp. 145–147 Google Scholar
  15. [FH91]
    W. Fulton, J. Harris, Representation Theory: A First Course. Graduate Texts in Math., vol. 129 (Springer, New York, 1991) CrossRefzbMATHGoogle Scholar
  16. [GY00]
    W.T. Gan, J.-K. Yu, Group schemes and local densities. Duke Math. J. 105(3), 497–524 (2000) CrossRefzbMATHMathSciNetGoogle Scholar
  17. [GHY01]
    W.T. Gan, J. Hanke, J.-K. Yu, On an exact mass formula of Shimura. Duke Math. J. 107(1), 103–133 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  18. [Gro99]
    B. Gross, Algebraic modular forms. Isr. J. Math. 113, 61–93 (1999) CrossRefzbMATHGoogle Scholar
  19. [HPS89]
    H. Hijikata, A.K. Pizer, T.R. Shemanske, The Basis Problem for Modular Forms on Γ 0(N) (Amer. Math. Soc., Providence, 1989) Google Scholar
  20. [Hof91]
    D.W. Hoffmann, On positive definite Hermitian forms. Manuscr. Math. 71, 399–429 (1991) CrossRefzbMATHGoogle Scholar
  21. [Hum75]
    J.E. Humphreys, Linear Algebraic Groups. Graduate Texts in Math., vol. 21 (Springer, New York, 1975) CrossRefzbMATHGoogle Scholar
  22. [Iya68]
    K. Iyanaga, Arithmetic of special unitary groups and their symplectic representations. J. Fac. Sci. Univ. Tokyo, Sect. 1 15(1), 35–69 (1968) zbMATHMathSciNetGoogle Scholar
  23. [Iya69]
    K. Iyanaga, Class numbers of definite Hermitian forms. J. Math. Soc. Jpn. 21, 359–374 (1969) CrossRefzbMATHMathSciNetGoogle Scholar
  24. [KV]
    M. Kirschmer, J. Voight, Algorithmic enumeration of ideal classes for quaternion orders. SIAM J. Comput. 39(5), 1714–1747 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  25. [Kne56]
    M. Kneser, Klassenzahlen indefiniter quadratischer Formen in drei oder mehr Veränderlichen. Arch. Math. 7, 323–332 (1956) CrossRefzbMATHMathSciNetGoogle Scholar
  26. [Kne57]
    M. Kneser, Klassenzahlen definiter quadratischer Formen. Arch. Math. 8, 241–250 (1957) CrossRefzbMATHMathSciNetGoogle Scholar
  27. [Kne66]
    M. Kneser, Strong approximation, in Algebraic Groups and Discontinuous Subgroups. Proc. Sympos. Pure Math., Boulder, Colo, 1965 (American Mathematical Society, Providence, 1966), pp. 187–196 CrossRefGoogle Scholar
  28. [Knu91]
    M.-A. Knus, Quadratic and Hermitian Forms over Rings (Springer, Berlin, 1991) CrossRefzbMATHGoogle Scholar
  29. [Koh01]
    D. Kohel, Hecke module structure of quaternions, in Class Field Theory: Its Centenary and Prospect, Tokyo, 1998, ed. by K. Miyake. Adv. Stud. Pure Math. vol. 30 (Math. Soc. Japan, Tokyo, 2001), pp. 177–195 Google Scholar
  30. [LP02]
    J. Lansky, D. Pollack, Hecke algebras and automorphic forms. Compos. Math. 130(1), 21–48 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  31. [Loe08]
    D. Loeffler, Explicit calculations of automorphic forms for definite unitary groups. LMS J. Comput. Math. 11, 326–342 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  32. [Loe]
    D. Loeffler, Computing with algebraic automorphic forms (this volume). doi: 10.1007/978-3-319-03847-6_2
  33. [O’Me00]
    O.T. O’Meara, Introduction to Quadratic Forms (Springer, Berlin, 2000) zbMATHGoogle Scholar
  34. [Piz80]
    A. Pizer, An algorithm for computing modular forms on Γ 0(N). J. Algebra 64(2), 340–390 (1980) CrossRefzbMATHMathSciNetGoogle Scholar
  35. [PS97]
    W. Plesken, B. Souvignier, Computing isometries of lattices. J. Symb. Comput. 24(3–4), 327–334 (1997). Computational algebra and number theory (London, 1993) CrossRefzbMATHMathSciNetGoogle Scholar
  36. [Sch85]
    W. Scharlau, Quadratic and Hermitian Forms (Springer, Berlin, 1985) CrossRefzbMATHGoogle Scholar
  37. [SH98]
    R. Scharlau, B. Hemkemeier, Classification of integral lattices with large class number. Math. Comput. 67(222), 737–749 (1998) CrossRefzbMATHMathSciNetGoogle Scholar
  38. [Schi98]
    A. Schiemann, Classification of Hermitian forms with the neighbour method. J. Symb. Comput. 26(4), 487–508 (1998) CrossRefzbMATHMathSciNetGoogle Scholar
  39. [Schu91]
    R. Schulze-Pillot, An algorithm for computing genera of ternary and quaternary quadratic forms, in Proc. Int. Symp. on Symbolic and Algebraic Computation, Bonn (1991) Google Scholar
  40. [Shi64]
    G. Shimura, Arithmetic of unitary groups. Ann. Math. 79, 369–409 (1964) CrossRefzbMATHMathSciNetGoogle Scholar
  41. [SW05]
    J. Socrates, D. Whitehouse, Unramified Hilbert modular forms, with examples relating to elliptic curves. Pac. J. Math. 219(2), 333–364 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  42. [Tit79]
    J. Tits, Reductive groups over local fields, in Automorphic Forms, Representations, and L-Functions. Proc. Symp. AMS, vol. 33 (1979), pp. 29–69 CrossRefGoogle Scholar
  43. [vLCL92]
    M.A.A. van Leeuwen, A.M. Cohen, B. Lisser, LiE, a package for Lie group computations. CAN, Amsterdam, 1992 Google Scholar
  44. [Voi]
    J. Voight, Identifying the matrix ring: algorithms for quaternion algebras and quadratic forms, in Quadratic and Higher Degree Forms. Developments in Math., vol. 31 (Springer, New York, 2013), pp. 255–298 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.University of CalgaryCalgaryCanada
  2. 2.Department of Mathematics and StatisticsUniversity of VermontBurlingtonUSA
  3. 3.Department of MathematicsDartmouth CollegeHanoverUSA

Personalised recommendations