Skip to main content

Computing Modular Forms for GL2 over Certain Number Fields

  • Conference paper
  • 1310 Accesses

Part of the book series: Contributions in Mathematical and Computational Sciences ((CMCS,volume 6))

Abstract

The cohomology of an arithmetic group is built out of certain automorphic forms. This allows computational investigation of these automorphic forms using topological techniques. We discuss recent techniques developed for the explicit computation of the cohomology of congruence subgroups of GL2 over CM-quartic and complex cubic number fields as Hecke-modules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For fields whose unit group is rank 0, we do not need reduction Type 0.

References

  1. A. Ash, Unstable cohomology of \({\rm SL}(n,\mathcal{O})\). J. Algebra 167(2), 330–342 (1994). MR1283290 (95g:20050)

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Ash, M. McConnell, Doubly cuspidal cohomology for principal congruence subgroups of \({\rm GL}(3,\mathbf {Z})\). Math. Comput. 59(200), 673–688 (1992). MR1134711 (93b:11066)

    MATH  MathSciNet  Google Scholar 

  3. A. Ash, M. McConnell, Experimental indications of three-dimensional Galois representations from the cohomology of \({\rm SL}(3,\mathbf {Z})\). Exp. Math. 1(3), 209–223 (1992). MR1203875 (94b:11045)

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Ash, P.E. Gunnells, M. McConnell, Cohomology of congruence subgroups of \({\rm SL}_{4}(\mathbb {Z})\). J. Number Theory 94(1), 181–212 (2002). MR1904968 (2003f:11072)

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Ash, P.E. Gunnells, M. McConnell, Cohomology of congruence subgroups of \({\rm SL}(4,\mathbb {Z})\). II. J. Number Theory 128(8), 2263–2274 (2008). MR2394820 (2009d:11084)

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Ash, P.E. Gunnells, M. McConnell, Cohomology of congruence subgroups of \({\rm SL}_{4}(\mathbb {Z})\). III. Math. Comput. 79(271), 1811–1831 (2010). MR2630015 (2011e:11095)

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Borel, J.-P. Serre, Corners and arithmetic groups. Comment. Math. Helv. 48, 436–491 (1973). Avec un appendice: Arrondissement des variétés à coins, par A. Douady et L. Hérault. MR0387495 (52 #8337)

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Bygott, Modular forms and modular symbols over imaginary quadratic fields. PhD. thesis, Exeter University, 1998

    Google Scholar 

  9. J.E. Cremona, Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields. Compos. Math. 51(3), 275–324 (1984). MR743014 (85j:11063)

    MATH  MathSciNet  Google Scholar 

  10. J.E. Cremona, E. Whitley, Periods of cusp forms and elliptic curves over imaginary quadratic fields. Math. Comput. 62(205), 407–429 (1994). MR1185241 (94c:11046)

    Article  MATH  MathSciNet  Google Scholar 

  11. L. Dembélé, Explicit computations of Hilbert modular forms on \({\mathbb {Q}} (\sqrt{5}\, )\). Exp. Math. 14(4), 457–466 (2005). MR2193808 (2006h:11050)

    Article  MATH  Google Scholar 

  12. J. Franke, Harmonic analysis in weighted L 2-spaces. Ann. Sci. Éc. Norm. Super. 31(2), 181–279 (1998). MR1603257 (2000f:11065)

    MATH  MathSciNet  Google Scholar 

  13. M. Greenberg, J. Voight, Computing systems of Hecke eigenvalues associated to Hilbert modular forms. Math. Comput. 80, 1071–1092 (2011). arXiv:0904.3908

    Article  MATH  MathSciNet  Google Scholar 

  14. P.E. Gunnells, Modular symbols for Q-rank one groups and Voronoĭreduction. J. Number Theory 75(2), 198–219 (1999). MR1681629 (2000c:11084)

    Article  MATH  MathSciNet  Google Scholar 

  15. P.E. Gunnells, Computing Hecke eigenvalues below the cohomological dimension. Exp. Math. 9(3), 351–367 (2000). MR1795307 (2001k:11092)

    Article  MATH  MathSciNet  Google Scholar 

  16. P.E. Gunnells, D. Yasaki, Hecke operators and Hilbert modular forms, in Algorithmic Number Theory. Lecture Notes in Comput. Sci., vol. 5011 (Springer, Berlin, 2008), pp. 387–401. MR2467860

    Chapter  Google Scholar 

  17. P.E. Gunnells, D. Yasaki, Modular forms and elliptic curves over the cubic field of discriminant −23. Int. J. Number Thoery 9(1), 53–76 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. P.E. Gunnells, F. Hajir, D. Yasaki, Modular forms and elliptic curves over the field of fifth roots of unity. With an appendix by Mark Watkins. Exp. Math 22(2), 203–216 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. K. Haberland, Perioden von Modulformen einer Variabler and Gruppencohomologie. I, II, III. Math. Nachr. 112, 245–282, 283–295, 297–315 (1983). MR 726861 (85k:11022)

    Google Scholar 

  20. M. Koecher, Beiträge zu einer Reduktionstheorie in Positivitätsbereichen. I. Math. Ann. 141, 384–432 (1960). MR0124527 (23 #A1839)

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Lingham, Modular forms and elliptic curves over imaginary quadratic fields. PhD. thesis, University of Nottingham, 2005

    Google Scholar 

  22. J. Socrates, D. Whitehouse, Unramified Hilbert modular forms, with examples relating to elliptic curves. Pac. J. Math. 219(2), 333–364 (2005). MR2175121 (2007c:11059)

    Article  MATH  MathSciNet  Google Scholar 

  23. G. Voronoı̌, Sur quelques propriétés des formes quadratiques positives parfaites. J. Reine Angew. Math. 133, 97–178 (1908)

    MATH  Google Scholar 

  24. D. Yasaki, Binary Hermitian forms over a cyclotomic field. J. Algebra 322, 4132–4142 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. D. Yasaki, Hyperbolic tessellations associated to Bianchi groups, in Algorithmic Number Theory, ed. by G. Hanrot, F. Morain, E. Thomé. Lecture Notes in Comput. Sci., vol. 6197 (Springer, Berlin, 2010), pp. 385–396

    Chapter  Google Scholar 

  26. D. Yasaki, Perfect unary forms over real quadratic fields. J. Théor. Nr. Bordx. (accepted)

    Google Scholar 

Download references

Acknowledgements

This article is based on a lecture delivered by the author at the Computations with Modular Forms 2011 conference at the Universität Heidelberg in September 2011. The author thanks the organizers of the conference Gebhard Böckle (Universität Heidelberg), John Voight (University of Vermont), and Gabor Wiese (Université du Luxembourg) for the opportunity to speak and for being such excellent hosts. Finally, the author thanks the referee for many helpful comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Yasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yasaki, D. (2014). Computing Modular Forms for GL2 over Certain Number Fields. In: Böckle, G., Wiese, G. (eds) Computations with Modular Forms. Contributions in Mathematical and Computational Sciences, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-03847-6_14

Download citation

Publish with us

Policies and ethics