Fixed Parameter Tractability of Crossing Minimization of Almost-Trees

  • Michael J. Bannister
  • David Eppstein
  • Joseph A. Simons
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8242)


We investigate exact crossing minimization for graphs that differ from trees by a small number of additional edges, for several variants of the crossing minimization problem. In particular, we provide fixed parameter tractable algorithms for the 1-page book crossing number, the 2-page book crossing number, and the minimum number of crossed edges in 1-page and 2-page book drawings.


Layout Problem Edge Crossing Crossing Minimization Biconnected Component Cyclomatic Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Pach, J., Tóth, G.: Which crossing number is it anyway? J. Combin. Theory Ser. B 80(2), 225–246 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Gurevich, Y., Stockmeyer, L., Vishkin, U.: Solving NP-hard problems on graphs that are almost trees and an application to facility location problems. J. ACM 31(3), 459–473 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fernández-Baca, D.: Allocating modules to processors in a distributed system. IEEE Transactions on Software Engineering 15(11), 1427–1436 (1989)CrossRefGoogle Scholar
  4. 4.
    Kloks, T., Bodlaender, H., Müller, H., Kratsch, D.: Computing treewidth and minimum fill-in: All you need are the minimal separators. In: Lengauer, T. (ed.) ESA 1993. LNCS, vol. 726, pp. 260–271. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  5. 5.
    Akutsu, T., Hayashida, M., Ching, W.K., Ng, M.K.: Control of Boolean networks: Hardness results and algorithms for tree structured networks. J. Theor. Bio. 244(4), 670–679 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fiala, J., Kloks, T., Kratochvíl, J.: Fixed-parameter complexity of λ-labelings. Discrete Appl. Math. 113(1), 59–72 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Coppersmith, D., Vishkin, U.: Solving NP-hard problems in ‘almost trees’: Vertex cover. Discrete Appl. Math. 10(1), 27–45 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bodlaender, H.: Dynamic algorithms for graphs with treewidth 2. In: van Leeuwen, J. (ed.) WG 1993. LNCS, vol. 790, pp. 112–124. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  9. 9.
    Fürer, M.: Counting perfect matchings in graphs of degree 3. In: Kranakis, E., Krizanc, D., Luccio, F. (eds.) FUN 2012. LNCS, vol. 7288, pp. 189–197. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Grohe, M.: Computing crossing numbers in quadratic time. In: ACM Symp. Theory of Computing (STOC 2001), pp. 231–236 (2001)Google Scholar
  11. 11.
    Kawarabayashi, K.I., Reed, B.: Computing crossing number in linear time. In: ACM Symp. Theory of Computing (STOC 2007), pp. 382–390 (2007)Google Scholar
  12. 12.
    Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Crossing number of graphs with rotation systems. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 3–12. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books: A layout problem with applications to VLSI design. SIAM J. Alg. Disc. Meth. 8(1), 33–58 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Potterat, J.J., Phillips-Plummer, L., Muth, S.Q., Rothenberg, R.B., Woodhouse, D.E., Maldonado-Long, T.S., Zimmerman, H.P., Muth, J.B.: Risk network structure in the early epidemic phase of HIV transmission in Colorado Springs. Sexually Transmitted Infections 78(suppl. 1), i159–i163 (2002)CrossRefGoogle Scholar
  15. 15.
    De, P., Singh, A.E., Wong, T., Yacoub, W., Jolly, A.M.: Sexual network analysis of a gonorrhoea outbreak. Sexually Transmitted Infections 80(4), 280–285 (2004)CrossRefGoogle Scholar
  16. 16.
    Potterat, J.J., Muth, S.Q., Rothenberg, R.B., Zimmerman-Rogers, H., Green, D.L., Taylor, J.E., Bonney, M.S., White, H.A.: Sexual network structure as an indicator of epidemic phase. Sexually Transmitted Infections 78(suppl. 1), i152–i158 (2002)CrossRefGoogle Scholar
  17. 17.
    Lombardi, M., Hobbs, R.: Mark Lombardi: Global Networks. Independent Curators (2003)Google Scholar
  18. 18.
    Butts, C.T., Acton, R.M., Marcum, C.S.: Interorganizational collaboratio in the Hurricane Katrina response. J. Social Structure 13(1) (2012)Google Scholar
  19. 19.
    Seidman, S.B.: Network structure and minimum degree. Social Networks 5(3), 269–287 (1983)MathSciNetCrossRefGoogle Scholar
  20. 20.
    de Nooy, W., Mrvar, A., Batagelj, V.: Exploratory Social Network Analysis with Pajek. Cambridge University Press (2012)Google Scholar
  21. 21.
    Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  22. 22.
    Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 97–108. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Masuda, S., Kashiwabara, T., Nakajima, K., Fujisawa, T.: On the NP-completeness of a computer network layout problem. In: 20th IEEE Symp. Circuits and Systems, pp. 292–295 (1987)Google Scholar
  24. 24.
    Baur, M., Brandes, U.: Crossing reduction in circular layouts. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 332–343. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Sedgewick, R.: Permutation generation methods. ACM Comput. Surv. 9(2), 137–164 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Masuda, S., Nakajima, K., Kashiwabara, T., Fujisawa, T.: Crossing minimization in linear embeddings of graphs. IEEE Trans. Computers 39(1), 124–127 (1990)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput. Sci. 348(2-3), 357–365 (2005)CrossRefzbMATHGoogle Scholar
  28. 28.
    Williams, V.V.: Multiplying matrices faster than Coppersmith–Winograd. In: ACM Symp. Theory of Computing (STOC 2012), pp. 887–898 (2012)Google Scholar
  29. 29.
    Alon, N., Galil, Z., Margalit, O.: On the exponent of the all pairs shortest path problem. J. Comput. Sys. Sci. 54(2), 255–262 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Yuval, G.: An algorithm for finding all shortest paths using N 2.81 infinite-precision multiplications. Inf. Proc. Lett. 4(6), 155–156 (1976)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Michael J. Bannister
    • 1
  • David Eppstein
    • 1
  • Joseph A. Simons
    • 1
  1. 1.Department of Computer ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations