Skip to main content

Drawing Non-Planar Graphs with Crossing-Free Subgraphs

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8242)

Abstract

We initiate the study of the following problem: Given a non-planar graph G and a planar subgraph S of G, does there exist a straight-line drawing Γ of G in the plane such that the edges of S are not crossed in Γ? We give positive and negative results for different kinds of spanning subgraphs S of G. Moreover, in order to enlarge the subset of instances that admit a solution, we consider the possibility of bending the edges of G ∖ S; in this setting different trade-offs between number of bends and drawing area are given.

Keywords

  • Span Tree
  • Planar Graph
  • Geometric Graph
  • Span Subgraph
  • Graph Drawing

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Work on these results began at the 8th Bertinoro Workshop on Graph drawing. Discussion with other participants is gratefully acknowledged. Part of the research was conducted in the framework of ESF project 10-EuroGIGA-OP-003 GraDR “Graph Drawings and Representations”.

References

  1. Ackerman, E.: On the maximum number of edges in topological graphs with no four pairwise crossing edges. Discrete & Computational Geometry 41(3), 365–375 (2009)

    MathSciNet  CrossRef  MATH  Google Scholar 

  2. Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar graphs. Journal of Combinatorial Theory, Ser. A 114(3), 563–571 (2007)

    MathSciNet  CrossRef  MATH  Google Scholar 

  3. Angelini, P., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Testing the simultaneous embeddability of two graphs whose intersection is a biconnected or a connected graph. Journal of Discrete Algorithms 14, 150–172 (2012)

    MathSciNet  CrossRef  MATH  Google Scholar 

  4. Angelini, P., Binucci, C., Da Lozzo, G., Didimo, W., Grilli, L., Montecchiani, F., Patrignani, M., Tollis, I.G.: Drawings of non-planar graphs with crossing-free subgraphs. ArXiv e-prints 1308.6706 (September 2013)

    Google Scholar 

  5. Bárány, I., Rote, G.: Strictly convex drawings of planar graphs. Documenta. Math. 11, 369–391 (2006)

    MATH  Google Scholar 

  6. Blasiüs, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization. CRC Press (2013)

    Google Scholar 

  7. Brandenburg, F.J., Eppstein, D., Gleißner, A., Goodrich, M.T., Hanauer, K., Reislhuber, J.: On the density of maximal 1-planar graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 327–338. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  8. Buchheim, C., Chimani, M., Gutwenger, C., Jünger, M., Mutzel, P.: Crossings and planarization. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization. CRC Press (2013)

    Google Scholar 

  9. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  10. Di Giacomo, E., Didimo, W., Liotta, G., Montecchiani, F.: h-quasi planar drawings of bounded treewidth graphs in linear area. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 91–102. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  11. Di Giacomo, E., Didimo, W., Liotta, G., Montecchiani, F.: Area requirement of graph drawings with few crossings per edge. Computational Geometry 46(8), 909–916 (2013)

    MathSciNet  CrossRef  MATH  Google Scholar 

  12. Didimo, W.: Density of straight-line 1-planar graph drawings. Information Processing Letters 113(7), 236–240 (2013)

    MathSciNet  CrossRef  MATH  Google Scholar 

  13. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theoretical Computer Science 412(39), 5156–5166 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

  14. Didimo, W., Liotta, G.: The crossing angle resolution in graph drawing. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory. Springer (2013)

    Google Scholar 

  15. Eades, P., Hong, S.H., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: Testing maximal 1-planarity of graphs with a rotation system in linear time - (extended abstract). In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 339–345. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  16. Hong, S.-H., Eades, P., Liotta, G., Poon, S.-H.: Fáry’s theorem for 1-planar graphs. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 335–346. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  17. Jansen, K., Woeginger, G.J.: The complexity of detecting crossingfree configurations in the plane. BIT Numerical Mathematics 33(4), 580–595 (1993)

    MathSciNet  CrossRef  MATH  Google Scholar 

  18. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1), 4–32 (1996)

    MathSciNet  CrossRef  MATH  Google Scholar 

  19. Knauer, C., Schramm, É., Spillner, A., Wolff, A.: Configurations with few crossings in topological graphs. Computational Geometry 37(2), 104–114 (2007)

    MathSciNet  CrossRef  MATH  Google Scholar 

  20. Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of 1-planarity testing. Journal of Graph Theory 72(1), 30–71 (2013)

    MathSciNet  CrossRef  MATH  Google Scholar 

  21. Kowalik, L., Kurowski, M.: Short path queries in planar graphs in constant time. In: Larmore, L.L., Goemans, M.X. (eds.) STOC 2003, pp. 143–148. ACM (2003)

    Google Scholar 

  22. Kratochvìl, J., Lubiv, A., Nešetřil, J.: Noncrossing subgraphs in topological layouts. SIAM Journal on Discrete Mathematics 4(2), 223–244 (1991)

    MathSciNet  CrossRef  MATH  Google Scholar 

  23. Pach, J., Shahrokhi, F., Szegedy, M.: Applications of the crossing number. Algorithmica 16(1), 111–117 (1996)

    MathSciNet  CrossRef  MATH  Google Scholar 

  24. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997)

    MathSciNet  CrossRef  MATH  Google Scholar 

  25. Rivera-Campo, E., Urrutia-Galicia, V.: A sufficient condition for the existence of plane spanning trees on geometric graphs. Computational Geometry 46(1), 1–6 (2013)

    MathSciNet  CrossRef  MATH  Google Scholar 

  26. Suk, A.: k-quasi-planar graphs. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 266–277. Springer, Heidelberg (2011)

    Google Scholar 

  27. Tutte, W.T.: How to draw a graph. Proceedings of the London Mathematical Society s3-13(1), 743–767 (1963)

    Google Scholar 

  28. Valtr, P.: On geometric graphs with no k pairwise parallel edges. Discrete & Computational Geometry 19(3), 461–469 (1998)

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Angelini, P. et al. (2013). Drawing Non-Planar Graphs with Crossing-Free Subgraphs. In: Wismath, S., Wolff, A. (eds) Graph Drawing. GD 2013. Lecture Notes in Computer Science, vol 8242. Springer, Cham. https://doi.org/10.1007/978-3-319-03841-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03841-4_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03840-7

  • Online ISBN: 978-3-319-03841-4

  • eBook Packages: Computer ScienceComputer Science (R0)