Many-to-One Boundary Labeling with Backbones

  • Michael A. Bekos
  • Sabine Cornelsen
  • Martin Fink
  • Seok-Hee Hong
  • Michael Kaufmann
  • Martin Nöllenburg
  • Ignaz Rutter
  • Antonios Symvonis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8242)

Abstract

In this paper we study many-to-one boundary labeling with backbone leaders. In this model, a horizontal backbone reaches out of each label into the feature-enclosing rectangle. Feature points associated with this label are linked via vertical line segments to the backbone. We present algorithms for label number and leader-length minimization. If crossings are allowed, we aim to minimize their number. This can be achieved efficiently in the case of fixed label order. We show that the corresponding problem in the case of flexible label order is NP-hard.

References

  1. 1.
    Bekos, M.A., Cornelsen, S., Fink, M., Hong, S., Kaufmann, M., Nöllenburg, M., Rutter, I., Symvonis, A.: Many-to-one boundary labeling with backbones. CoRR (2013), arXiv:1308.6801Google Scholar
  2. 2.
    Bekos, M.A., Kaufmann, M., Symvonis, A., Wolff, A.: Boundary labeling: Models and efficient algorithms for rectangular maps. Computational Geometry 36(3), 215–236 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Hassin, R., Tamir, A.: Improved complexity bounds for location problems on the real line. Operations Research Letters 10(7), 395–402 (1991)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Kaufmann, M.: On map labeling with leaders. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 290–304. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Research Logistics Quarterly 2(1-2), 83–97 (1955)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Lin, C.C.: Crossing-free many-to-one boundary labeling with hyperleaders. In: Proc. IEEE Pacific Visualization Symp. (PacificVis 2010), pp. 185–192. IEEE (2010)Google Scholar
  7. 7.
    Lin, C.C., Kao, H.J., Yen, H.C.: Many-to-one boundary labeling. Journal of Graph Algorithms and Applications 12(3), 319–356 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Masuda, S., Nakajima, K., Kashiwabara, T., Fujisawa, T.: Crossing minimization in linear embeddings of graphs. IEEE Trans. Computers 39(1), 124–127 (1990)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Michael A. Bekos
    • 1
  • Sabine Cornelsen
    • 2
  • Martin Fink
    • 3
  • Seok-Hee Hong
    • 4
  • Michael Kaufmann
    • 1
  • Martin Nöllenburg
    • 5
  • Ignaz Rutter
    • 5
  • Antonios Symvonis
    • 6
  1. 1.Institute for InformaticsUniversity of TübingenGermany
  2. 2.Department of Computer and Information ScienceUniversity of KonstanzGermany
  3. 3.Lehrstuhl für Informatik IUniversität WürzburgGermany
  4. 4.School of Information TechnologiesUniversity of SydneyAustralia
  5. 5.Institute of Theoretical InformaticsKarlsruhe Institute of TechnologyGermany
  6. 6.School of Applied Mathematics and Physical SciencesNTUAGreece

Personalised recommendations