Upward Planarity Testing: A Computational Study

  • Markus Chimani
  • Robert Zeranski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8242)


A directed acyclic graph (DAG) is upward planar if it can be drawn without any crossings while all edges—when following them in their direction—are drawn with strictly monotonously increasing y-coordinates. Testing whether a graph allows such a drawing is known to be NP-complete, but there is a substantial collection of different algorithmic approaches known in literature.

In this paper, we give an overview of the known algorithms, ranging from combinatorial FPT and branch-and-bound algorithms to ILP and SAT formulations. Most approaches of the first class have only been considered from the theoretical point of view, but have never been implemented. For the first time, we give an extensive experimental comparison between virtually all known approaches to the problem.

Furthermore, we present a new SAT formulation based on a recent theoretical result by Fulek et al. [8], which turns out to perform best among all known algorithms.


Directed Acyclic Graph Integer Linear Program Planar Embedding Planar Drawing Target Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of triconnected digraphs. Algorithmica 12(6), 476–497 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bertolazzi, P., Di Battista, G., Didimo, W.: Quasi-upward planarity. Algorithmica 32(3), 474–506 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chimani, M., Zeranski, R.: Upward planarity testing via SAT. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 248–259. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Di Battista, G., Garg, A., Liotta, G., Parise, A., Tamassia, R., Tassinari, E., Vargiu, F., Vismara, L.: Drawing directed acyclic graphs: An experimental study. Int. J. of Computational Geometry and Appl. 10(6), 623–648 (2000)CrossRefzbMATHGoogle Scholar
  5. 5.
    Di Battista, G., Liu, W.P., Rival, I.: Bipartite graphs, upward drawings, and planarity. Information Processing Letters 36(6), 317–322 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. on Computing 25, 956–997 (1996)CrossRefzbMATHGoogle Scholar
  7. 7.
    Didimo, W., Giordano, F., Liotta, G.: Upward spirality and upward planarity testing. SIAM J. on Discrete Mathematics 23(4), 1842–1899 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fulek, R., Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Hanani–Tutte, monotone drawings, and level-planarity. Thirty Essays on Geom. Graph Th., 263–287 (2013)Google Scholar
  9. 9.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. on Computing 31(2), 601–625 (2002)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Healy, P., Lynch, K.: Fixed-parameter tractable algorithms for testing upward planarity. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 199–208. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Hutton, M.D., Lubiw, A.: Upward planar drawing of single source acyclic digraphs. In: Proc. SODA 1991, pp. 203–211 (1991)Google Scholar
  12. 12.
    Pach, J., Toth, G.: Monotone drawings of planar graphs. J. of Graph Theory 46(1), 39–47 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Papakostas, A.: Upward planarity testing of outerplanar dags. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 298–306. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  14. 14.
    Welzl, E., Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An experimental comparison of four graph drawing algorithms. Computational Geometry 7, 303–325 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Markus Chimani
    • 1
  • Robert Zeranski
    • 2
  1. 1.Theoretical Computer ScienceOsnabrück UniversityGermany
  2. 2.Algorithm EngineeringFriedrich-Schiller-University JenaGermany

Personalised recommendations