Skip to main content

Rotary Flow

  • Chapter
  • First Online:
Book cover Slow Viscous Flow

Abstract

Axially symmetric creeping flow generated by rotary motion of solid boundaries is treated. If the Reynolds number is not zero, there will be a secondary flow, due to centrifugal force, in the meridional planes. For the case of flow between concentric spheres, this is calculated to first order using the Reynolds number as a perturbation parameter. Rotlets are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowitz M, Stegun IA (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables, 10th edn. Wiley, New York

    MATH  Google Scholar 

  • Adam NK (1968) The physics and chemistry of surfaces. Dover, New York

    Google Scholar 

  • Anagnostou G, Maday Y, Mavriplis C, Patera A (1990) On the mortar element method: generalizations and implementation. In: Chan T, Glowinski R, Périaux J, Widlund O (eds) Third international symposium on domain decomposition methods for partial differential equations, Philadelphia. SIAM, pp 157–173

    Google Scholar 

  • Aris R (1962) Vectors, tensors, and the basic equations of fluid mechanics. Dover, New York

    MATH  Google Scholar 

  • Azaïez M, Deville M, Mund E (2011) Éléments finis pour les fluides incompressibles. Presses Polytechniques et Universitaires Romandes, Lausanne

    MATH  Google Scholar 

  • Babuška I (1973) The finite element method with Lagrangian multipliers. Numer Math 20:179–192

    MATH  Google Scholar 

  • Bairstow L, Cave BM, Lang ED (1922) The two-dimensional slow motion of viscous fluids. Proc R Soc Lond A 100:394–413

    Google Scholar 

  • Barenblatt GI (2003) Scaling. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Barlow EJ, Langlois WE (1962) Diffusion of gas from a liquid into an expanding bubble. IBM J Res Dev 6:329–337

    MATH  Google Scholar 

  • Barthès-Biesel D (2012) Microhydrodynamics and complex fluids. CRC/Taylor and Francis, Boca Raton

    MATH  Google Scholar 

  • Basdevant C, Deville M, Haldenwang P, Lacroix JM, Ouazzani J, Peyret R, Orlandi P, Patera AT (1986) Spectral and finite difference solutions of the Burgers equation. Comput Fluids 14:23–41

    MATH  Google Scholar 

  • Batchelor GK (1953) The theory of homogeneous turbulence. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Batchelor GK (1992) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Batcho P, Karniadakis G (1994) Generalized Stokes eigenfunctions: a new trial basis for the solution of incompressible Navier-Stokes equations. J Comput Phys 115:121–146

    MATH  MathSciNet  Google Scholar 

  • Benton ER, Platzmann GN (1972) A table of solutions of one-dimensional Burgers equation. Q Appl Math 29:195–212

    Google Scholar 

  • Berker R (1963) Intégration des équations du mouvement d’un fluide visqueux incompressible. In: Flügge S (ed) Encyclopedia of physics, vol VIII/2. Springer, Berlin, pp 1–384

    Google Scholar 

  • Bernardi C, Maday Y, Patera A (1994) A new nonconforming approach to domain decomposition: the mortar element method. In: Brezis H, Lions JL (eds) Collège de France Seminar, vol XI. Pitman, Boston, pp 13–51

    Google Scholar 

  • Bikerman JJ (1958) Surface chemistry. Academic, New York

    Google Scholar 

  • Boger DV, Walters K (1993) Rheological phenomena in focus. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Bosshard C, Bouffanais R, Deville M, Gruber R, Latt J (2011) Computational performance of a parallelized three-dimensional high-order spectral element toolbox. Comput Fluids 44:1–8

    MATH  MathSciNet  Google Scholar 

  • Botsis J, Deville M (2006) Mécanique des milieux continus: une Introduction. Presses Polytechniques et Universitaires Romandes, Lausanne

    Google Scholar 

  • Brenner H (1962) Effect of finite boundaries on the Stokes resistance of an arbitrary particle. J Fluid Mech 12:35–48

    MATH  MathSciNet  Google Scholar 

  • Brenner H, Graham AL, Abbott JR, Mondy LA (1990) Theoretical basis for falling-body rheometry in suspensions of neutrally buoyant spheres. Int J Multiph Flow 16:579–596

    MATH  Google Scholar 

  • Brezzi F (1974) On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers. RAIRO Anal Numer 8:129–151

    MATH  MathSciNet  Google Scholar 

  • Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, Berlin

    MATH  Google Scholar 

  • Carey FG, Oden JT (1983) Finite elements: a second course. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Carrier GF (1953) On slow viscous flow. Final report, Office of Naval Research Contract nonr-653(00), Brown University

    Google Scholar 

  • Chang ID (1961) Navier-Stokes solutions at large distances from a finite body. Indiana Univ Math J 10:811–876

    MATH  Google Scholar 

  • Chester W (1962) On Oseen’s approximation. J Fluid Mech 13:557–569

    MATH  MathSciNet  Google Scholar 

  • Chester W, Breach DR, Proudman I (1969) On the flow past a sphere at low Reynolds number. J Fluid Mech 37:751–760

    MATH  Google Scholar 

  • Chorin AJ (1968) Numerical solution of the Navier-Stokes equations. Math Comput 22:745–762

    MATH  MathSciNet  Google Scholar 

  • Ciarlet PG (1978) The finite element method for elliptic problems. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Cochran WG (1934) The flow due to a rotating disc. Math Proc Camb Philos Soc 30:365–375

    MATH  Google Scholar 

  • Constantin P, Foias C (1988) Navier-Stokes equations. Chicago lectures in mathematics. University of Chicago Press, Chicago

    MATH  Google Scholar 

  • Dean WR (1958) An application in hydrodynamics of the Green’s function of an elastic plate. Mathematika 5:85–92

    MATH  MathSciNet  Google Scholar 

  • Deville MO, Gatski TB (2012) Mathematical modeling for complex fluids and flows. Springer, Berlin

    MATH  Google Scholar 

  • Deville MO, Fischer PF, Mund EH (2002) High-order methods for incompressible fluid flow. Cambridge monographs on applied and computational mathematics. Cambridge University Press, Cambridge

    Google Scholar 

  • Dowty EL (1963) A solution to the oscillating plate problem with discontinuous initial conditions. J Basic Eng 85D:477–478

    Google Scholar 

  • Drazin PG, Reid WH (2004) Hydrodynamic stability, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Dussan V EB (1976) On the difference between a bounding surface and a material surface. J Fluid Mech 75:609–623

    MATH  Google Scholar 

  • Elrod HG (1960) A derivation of the basic equations for hydrodynamic lubrication with a fluid having constant properties. Q Appl Math 27:349–385

    MathSciNet  Google Scholar 

  • Ericksen JL (1960) Tensor fields. In: Flügge S (ed) Encyclopedia of physics, vol lll/l. Springer, Berlin, pp 794–858

    Google Scholar 

  • Eringen AC (1962) Nonlinear theory of continuous media. McGraw-Hill, New York

    Google Scholar 

  • Eymard R, Herbin R, Gallouet T (2000) Finite volume methods. In: Ciarlet P, Lions J (eds) Handbook of numerical analysis, vol VII. North Holland, Amsterdam, pp 713–1020

    Google Scholar 

  • Finn R, Noll W (1957) On the uniqueness and nonexistence of Stokes flows. Arch Ration Mech Anal 1:97–106

    MathSciNet  Google Scholar 

  • Frey PJ, George PL (2000) Mesh generation: application to finite elements. Hermes Science, Paris

    Google Scholar 

  • Fung YC (1984) Biodynamics: circulation. Springer, New York

    Google Scholar 

  • Girault V, Raviart PA (1986) Finite element methods for Navier-Stokes equations. Springer, Berlin

    MATH  Google Scholar 

  • Goldstein S (1929) The steady flow of a viscous fluid past a fixed spherical obstacle at small Reynolds numbers. Proc R Soc Lond A 123:225–235

    MATH  Google Scholar 

  • Goldstein S (1938) Modern development in fluid dynamics. Clarendon Press, Philadelphia

    Google Scholar 

  • Goldstein S (1960) Lectures on fluid mechanics. Lectures in applied mathematics, vol 2. Interscience, London

    Google Scholar 

  • Goodier JN (1934) An analogy between the slow motions of a viscous fluid in two dimensions, and systems of plane stress. Philos Mag 17:554–576

    MATH  Google Scholar 

  • Gray J, Hancock GJ (1955) The propagation of sea-urchin spermatozoa. J Exp Biol 32:802–804

    Google Scholar 

  • Gresho PM, Sani RL (2000) Incompressible flow and the finite element method: Part I and II. Wiley, Chichester

    Google Scholar 

  • Gresho PM, Lee RL, Sani RL (1980) On the time-dependent solution of the incompressible Navier-Stokes equations in two and three dimensions. In: Taylor C, Morgan K (eds) Recent advances in numerical methods in fluids, vol 1. Pineridge Press, Swansea, pp 27–79

    Google Scholar 

  • Gross WA (1962) Gas film lubrication. Wiley, Chichester

    MATH  Google Scholar 

  • Guazzelli E, Morris JF (2011) A physical introduction to suspension dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Guyon E, Hulin JP, Petit L (2012) Hydrodynamique physique, 3rd edn. CNRS Éditions & EDP Sciences, Paris

    Google Scholar 

  • Haberman WL (1962) Secondary flow about a sphere rotating in a viscous liquid inside a coaxially rotating spherical container. Phys Fluids 5:625–626

    MathSciNet  Google Scholar 

  • Hamel G (1916) Spiralförmige Bewegungen zäher Flussigkeiten. Jahresber d Deutschen Mathematiker-Vereinigung 25:34–60

    MATH  Google Scholar 

  • Hancock GJ (1953) The self-propulsion of microscopic organisms through liquids. Proc R Soc Lond A 217:96–121

    MATH  MathSciNet  Google Scholar 

  • Happel JR, Brenner H (2013) Low Reynolds number hydrodynamics: with special applications to particulate media. Springer, Berlin

    Google Scholar 

  • Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 8:2181–2189

    Google Scholar 

  • Hasimoto H (1956) A sphere theorem on the Stokes equation for axisymmetric viscous flow. J Phys Soc Jpn 11:793–797

    MathSciNet  Google Scholar 

  • Hayes WD, Probstein RF (2004) Hypersonic inviscid flow. Dover, Mineola

    Google Scholar 

  • Hill R, Power G (1956) Extremum principles for slow viscous flow and the approximate calculation of drag. Q J Mech Appl Math 9:313–319

    MATH  MathSciNet  Google Scholar 

  • Hirsch C (1991) Numerical computation of internal and external flows: fundamentals of numerical discretization. Wiley, Chichester

    Google Scholar 

  • Hori Y (2006) Hydrodynamic lubrication. Springer, Berlin

    MATH  Google Scholar 

  • Jeffrey DJ, Sherwood JD (1980) Streamline patterns and eddies in low-Reynolds-number flow. J Fluid Mech 96:315–334

    MATH  MathSciNet  Google Scholar 

  • Jeffreys H (1931) Cartesian tensors. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Johnson C (1990) Numerical solution of partial differential equations by the finite element method. Cambridge University Press, Cambridge

    Google Scholar 

  • Kantorovich LV, Krylov VI (1964) Approximate methods of higher analysis. Interscience, New York

    Google Scholar 

  • Kanwal RP (1961) Slow steady rotation of axially symmetric bodies in a viscous fluid. J Fluid Mech 10:17–24

    MATH  MathSciNet  Google Scholar 

  • Kaplun S (1957) Low Reynolds number flow past a circular cylinder. J Math Mech 6:595–603

    MATH  MathSciNet  Google Scholar 

  • Kestin J, Persen LN (1955) The lnfluence of edges on shearing stresses in viscous laminar flow. Technical report no. 3, Brown University

    Google Scholar 

  • Knopp K (1945) Theory of functions. Dover, New York

    Google Scholar 

  • Koschmieder EL (1993) Bénard cells and Taylor vortices. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Kovasznay LIG (1948) Laminar flow behind a two-dimensional grid. Math Proc Camb Philos Soc 44:58–62

    MATH  MathSciNet  Google Scholar 

  • Krakowski M, Charnes A (1951) Stokes’ paradox and biharmonic flows. Technical report no. 37, Carnegie Institute of Technology

    Google Scholar 

  • Labrosse G, Leriche E, Lallemand P (2014) Stokes eigenmodes in cubic domain: their symmetry properties. Theor Comput Fluid Dyn. DOI: 10.1007/s00162-014-0318-5

    Google Scholar 

  • Ladyzhenskaya OA (1969) The mathematical theory of viscous incompressible flow. Mathematics and its applications, vol 2, 2nd edn. Gordon and Breach, New York

    Google Scholar 

  • Lamb SH (1995) Hydrodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Landau L, Lifshitz EM (1997) Fluid mechanics. Butterworth Heinemann, Oxford

    Google Scholar 

  • Langlois WE (1958) Creeping viscous flow through a two-dimensional channel of varying gap. In: Proceedings of the third U.S. National Congress of applied mechanics, Rhode Island, p 777

    Google Scholar 

  • Langlois WE (1962) Isothermal squeeze films. Q Appl Math 20:131–150

    MATH  Google Scholar 

  • Langlois WE (1963) Similarity rules for isothermal bubble growth. J Fluid Mech 15:111–118

    MATH  MathSciNet  Google Scholar 

  • Langlois WE (1971) An elementary proof that the undetermined stress in an incompressible fluid is of the form − p I. Am J Phys 39:641–642

    Google Scholar 

  • Langlois WE (1981) Conservative differencing procedures for rotationally symmetric flows with swirl. Comput Methods Appl Mech Eng 25:315–333

    MATH  Google Scholar 

  • Langlois WE (1985) Buoyancy-driven flows in crystal growth melts. Annu Rev Fluid Mech 17:191–215

    Google Scholar 

  • Leal LG (2007) Advanced transport phenomena, fluid mechanics and convective transport processes. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Leriche E, Labrosse G (2004) Stokes eigenmodes in square domain and the stream function–vorticity correlation. J Comput Phys 200:489–511

    MATH  MathSciNet  Google Scholar 

  • Leriche E, Labrosse G (2005) Fundamental Stokes eigenmodes in the square: which expansion is more accurate, Chebyshev or Reid-Harris? Numer Algorithms 38:111–131

    MATH  MathSciNet  Google Scholar 

  • Leriche E, Labrosse G (2011) Are there localized eddies in the trihedral corners of the Stokes eigenmodes in cubical cavity? Comput Fluids 43:98–101

    MATH  Google Scholar 

  • Lighthill J (1976) Flagellar hydrodynamics. SIAM Rev 18:161–230

    MATH  MathSciNet  Google Scholar 

  • Lighthill J (1996) Helical distributions of stokeslets. J Eng Math 30:35–78

    MATH  MathSciNet  Google Scholar 

  • McConnell AJ (1957) Applications of tensor analysis. Dover, New York

    Google Scholar 

  • Milne-Thomson LM (1996) Theoretical hydrodynamics. Dover, New York

    Google Scholar 

  • Moffatt HK (1964) Viscous and resistive eddies near a sharp corner. J Fluid Mech 18:1–18

    MATH  Google Scholar 

  • Moisil GC (1955) Metoda funcţiilor analitice in hidrodinamica lichidelor viscoase. Comunicǎrile Academiei R P Romîne 5:1411

    MATH  MathSciNet  Google Scholar 

  • Muskhelishvili NI (1963) Some basic problems of the mathematical theory of elasticity. Noordhoff, Groningen

    MATH  Google Scholar 

  • Ockendon H, Ockendon JR (1995) Viscous flow. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Orszag S, Israeli M, Deville M (1986) Boundary conditions for incompressible flows. J Sci Comput 1:75–111

    MATH  Google Scholar 

  • Panton RL (1984) Incompressible flow. Wiley, New York

    MATH  Google Scholar 

  • Payne LE, Pell WH (1960) The Stokes problem for a class of axially symmetric bodies. J Fluid Mech 7:529–549

    MATH  MathSciNet  Google Scholar 

  • Pell WH, Payne LE (1960) On Stokes flow about a torus. Mathematika 7:78–92

    MATH  MathSciNet  Google Scholar 

  • Peyret R, Taylor TD (1983) Computational methods for fluid flow. Springer, Berlin

    MATH  Google Scholar 

  • Pinkus O, Sternlicht B (1961) Theory of hydrodynamic lubrication. McGraw-Hill, New York

    MATH  Google Scholar 

  • Plesset MS, Zwick SA (1954) The growth of vapor bubbles in superheated liquids. J Appl Phys 25:493–500

    MATH  MathSciNet  Google Scholar 

  • Pólya G (1948) Torsional rigidity, electrostatic capacity, and symmetrization. Q Appl Math 6:267–277

    MATH  Google Scholar 

  • Pozrikidis C (2009) Fluid dynamics: theory, computation, and numerical simulation. Springer, New York

    Google Scholar 

  • Proudman I, Pearson JRA (1957) Expansions at small Reynolds number for the flow past a sphere and a circular cylinder. J Fluid Mech 2:237–262

    MATH  MathSciNet  Google Scholar 

  • Purcell EM (1997) The efficiency of propulsion by a rotating flagellum. Proc Natl Acad Sci USA 94:11307–11311

    Google Scholar 

  • Quarteroni A, Valli A (1997) Numerical approximation of partial differential equations. Springer, Berlin

    Google Scholar 

  • Rappaz M, Bellet M, Deville M (2003) Numerical modeling in materials science and engineering. Springer, Berlin

    MATH  Google Scholar 

  • Rieutord M (1997) Une introduction à la dynamique des fluides. Masson, Paris

    Google Scholar 

  • Rivlin RS (1957) Preliminary notes to a course of lectures on solid mechanics. Technical report, summer seminar in applied mathematics, Boulder

    Google Scholar 

  • Rivlin RS, Ericksen JL (1955) Stress-deformation relations for isotropic materials. Arch Ration Mech Anal 4:323–425

    MATH  MathSciNet  Google Scholar 

  • Rivlin RS, Smith GF (1957) The anisotropic tensors. Q Appl Math 15:308–314

    MATH  MathSciNet  Google Scholar 

  • Rønquist E (1991) Spectral element methods for the unsteady Navier-Stokes equations. In: Von Karman Institute for Fluid Dynamics (eds) Computational fluid dynamics. Lecture series 1991-01. von Karman Institute for Fluid Dynamics, Rhode St-Genèse, Belgium

    Google Scholar 

  • Rubinow SI, Keller JB (1961) The transverse force on a spinning sphere moving in a viscous fluid. J Fluid Mech 11:447–459

    MATH  MathSciNet  Google Scholar 

  • Saad Y (2003) Iterative methods for sparse linear systems. SIAM, Philadelphia

    MATH  Google Scholar 

  • Salbu EOJ (1964) Compressible squeeze films and squeeze bearings. J Basic Eng 86:355–366

    Google Scholar 

  • Sani R, Gresho P, Lee R, Griffiths D, Engleman M (1981) The cause and cure (?) of the spurious pressures generated by certain FEM solutions of the incompressible Navier-Stokes equations. Int J Numer Meth Fluids 1:17–43; 171–204

    MATH  Google Scholar 

  • Schlichting H (1960) Boundary layer theory. McGraw Hill, New York

    MATH  Google Scholar 

  • Schmid PJ, Henningson DS (2001) Stability and transition in shear flows. Springer, New York

    MATH  Google Scholar 

  • Scott JF (2013) Moffatt-type flows in a trihedral cone. J Fluid Mech 725:446–461

    MathSciNet  Google Scholar 

  • Sengupta TK (2013) High accuracy computing methods: fluid flows and wave phenomena. Cambridge University Press, Cambridge

    Google Scholar 

  • Serrin J (1959) Mathematical principles of classical fluid mechanics. In: Flügge S (ed) Encyclopedia of physics, vol Vlll/l. Springer, Berlin, pp 125–263

    Google Scholar 

  • Shankar PN (2007) Slow viscous flows: qualitative features and quantitative analysis using complex eigenfunction expansions. Imperial College Press, London

    Google Scholar 

  • Snoeijer JH, Andreotti B (2013) Moving contact lines: scales, regimes, and dynamical transitions. Annu Rev Fluid Mech 45:269–292

    MathSciNet  Google Scholar 

  • Sokolnikoff IS (1951) Tensor analysis. Wiley, New York

    MATH  Google Scholar 

  • Sokolnikoff IS (1983) Mathematical theory of elasticity. Krieger, Malabar

    MATH  Google Scholar 

  • Spencer AJM (2004) Continuum mechanics. Dover, Mineola

    MATH  Google Scholar 

  • Strang G (1986) Introduction to applied mathematics. Wellesley-Cambridge Press, Wellesley

    MATH  Google Scholar 

  • Strang G, Fix G (1973) An analysis of the finite element method. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Taneda S (1979) Visualization of separating Stokes flows. J Phys Soc Jpn 46:1935–1942

    Google Scholar 

  • Taylor GI (1922) Stability of a viscous liquid contained between two rotating cylinders. Philos Trans R Soc A 73:289–343

    Google Scholar 

  • Taylor GI (1962) On scraping viscous fluid from a plane surface. In: Batchelor GK (ed) The scientific papers of Sir Geoffrey Ingram Taylor, vol IV. Cambridge University Press, Cambridge, pp 410–413

    Google Scholar 

  • Taylor C, Hood P (1973) A numerical solution of the Navier-Stokes equations using the finite element technique. Comput Fluids 1:73–100

    MATH  MathSciNet  Google Scholar 

  • Témam R (1969) Sur l’approximation des équations de Navier-Stokes par la méthode des pas fractionnaires ii. Arch Ration Mech Anal 33:377–385

    MATH  Google Scholar 

  • Tipei N (1962) Theory of lubrication. Stanford University Press, Stanford

    MATH  Google Scholar 

  • Tran-Cong T, Blake JR (1982) General solutions of the Stokes’ flow equations. J Math Anal Appl 90:72–84

    MATH  MathSciNet  Google Scholar 

  • Tritton DJ (1980) Physical fluid dynamics. Van Nostrand Reinhold, New York

    Google Scholar 

  • Truesdell C (1952) The mechanical foundations of elasticity and fluid dynamics. J Ration Mech Anal 1:125–300

    MATH  MathSciNet  Google Scholar 

  • Truesdell C (1966) The elements of continuum mechanics. Springer, New York

    MATH  Google Scholar 

  • Truesdell C, Toupin RA (1960) The classical field theories. In: Flügge S (ed) Encyclopedia of physics, vol lll/l. Springer, Berlin, pp 226–793

    Google Scholar 

  • Tu C, Deville M, Dheur L, Vanderschuren L (1992) Finite element simulation of pulsatile flow through arterial stenosis. J Biomech 25:1141–1152

    Google Scholar 

  • Van Dyke M (1983) An album of fluid motion. Parabolic Press, Stanford

    Google Scholar 

  • Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite volume method. Pearson, Harlow

    Google Scholar 

  • von Kármán T (1921) Über laminare und turbulente Reibung. Zeit Ang Math Mech 1:233–252

    MATH  Google Scholar 

  • von Mises R (2004) Mathematical theory of compressible flow. Dover, Mineola

    Google Scholar 

  • Walsh O (1992) Eddy solutions of the Navier-Stokes equations. In: Heywood J, Masuda K, Rautmann R, Solonnikov S (eds) The Navier-Stokes equations II – theory and numerical methods. Lecture notes in mathematics, vol 1530. Springer, Berlin, pp 306–309

    Google Scholar 

  • Wannier GH (1950) A contribution to the hydrodynamics of lubrication. Q Appl Math 8:1–32

    MATH  MathSciNet  Google Scholar 

  • Weinstein SJ, Ruschak KJ (2004) Coating flows. Annu Rev Fluid Mech 36:29–53

    Google Scholar 

  • Widder DV (1989) Advanced calculus, 2nd edn. Dover, New York

    MATH  Google Scholar 

  • Williamson CHK (1996) Vortex dynamics in cylinder wake. Annu Rev Fluid Mech 28:477–539

    Google Scholar 

  • Zamir M (2000) The physics of pulsatile flow. Springer, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Langlois, W.E., Deville, M.O. (2014). Rotary Flow. In: Slow Viscous Flow. Springer, Cham. https://doi.org/10.1007/978-3-319-03835-3_8

Download citation

Publish with us

Policies and ethics