Skip to main content

Part of the book series: SpringerBriefs in Environmental Science ((BRIEFSENVIRONMENTAL))

  • 480 Accesses

Abstract

Globally, air temperature rose by 0.74 °C between 1906 and 2005 and is projected to rise up to 6.4 °C by 2099, according to the Intergovernmental Panel on Climate Change (IPCC 2007). Climate warming can affect the distribution and the intensity of parasitic diseases that are carried by insects and animals (vector-borne diseases).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.klimu.uni-bremen.de/english/klimaszenarioenglisch.html.

  2. 2.

    http://grass.osgeo.org.

  3. 3.

    http://www.vividsolutions.com/jump.

References

  • Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford University Press, Oxford

    Google Scholar 

  • Brookmeyer R, Stroup D (2004) Monitoring the health of populations: statistical principles and methods for public health surveillance. Oxford University Press, New York

    Google Scholar 

  • Davis AJ, Jenkinson LS, Lawton JH, Shorrocks B, Wood S (1998) Making mistakes when predicting shifts in species range in response to global warming. Nature 391:783–786

    Article  CAS  Google Scholar 

  • Dietz K (1993) The estimation of the basic reproduction number for infectious diseases. Stat Methods Med Res 2:23–41

    Article  CAS  Google Scholar 

  • Doudier B, Bogreau H, DeVries A, Ponçon N, Stauffer WM, Fontenille D, Rogier C, Parola P (2007) Possible autochtonous malaria from Marseille to Minneapolis. Emerg Infect Dis 13(8):1236–1238

    Article  Google Scholar 

  • Ebert B, Fleischer B (2008) Malaria: Stellungnahmen des Arbeitskreises Blut des Bundesministeriums für Gesundheit. Bundesgesundheitsblatt—Gesundheitsforschung—Gesundheitsschutz 51:236–249

    Google Scholar 

  • Gill CA (1921) The role of meteorology on malaria. Indian J Med Res 8:633–693

    Google Scholar 

  • Gill CA (1923) The prediction of malaria epidemics. Indian J Med Res 10:1136–1143

    Google Scholar 

  • Gimnig JE, Hightower AW, Hawley WA (2005) Application of geographic information systems to the study of the ecology of mosquitoes and mosquito-borne diseases. In: Takken W, Martens P, Bogers RJ (eds) Environmental change and malaria risk: global and local implications. Springer, Dordrecht

    Google Scholar 

  • Gratz NG, Steffen R, Cocksedge W (2000) Why aircraft disinsection? Bull World Health Organ 78(8):995–1004

    CAS  Google Scholar 

  • Gubler DJ, Reiter P, Ebi KL, Yap W, Nasci R, Patz JA (2001) Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases. Environ Health Persp 109(2):223–233

    Article  Google Scholar 

  • Hay SI, Cox J, Rogers DJ, Randolph SE, Stern DI, Shanks GD, Myers MF, Snow RW (2002) Climate change: regional warming and malaria resurgence-reply. Nature 420:628

    Article  CAS  Google Scholar 

  • Hornsmann I, Pesch R, Schmidt G, Schröder W (2008) Calculation of an ecological land classification of Europe (ELCE) and its application for optimising environmental monitoring networks. In: Car A, Griesebner G, Strobl J (eds) Geospatial crossroads @ GI_Forum ‘08: proceedings of the geoinformatics forum Salzburg. Wichmann, Heidelberg, 140–151

    Google Scholar 

  • Hoshen MB, Morse AP (2004) A weather-driven model of malaria transmission. Malar J 3:32

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel of Climate Change) (2001) Climate change: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (Intergovernmental Panel of Climate Change) (2007) Climate change 2007. Synthesis report, Geneva

    Book  Google Scholar 

  • Kitron U, Pener H, Costin C, Orshan L, Greenberg Z, Shalom U (1994) Geographic information system in malaria surveillance: mosquito breeding and imported cases in Israel, 1992. Am J Trop Med Hyg 50:550–556

    CAS  Google Scholar 

  • Koslowsky S (2002) Bluetounge disease in Deutschland? Risikoabschätzung mit Hilfe eines Geographischen Informationssystems (GIS). Dissertation, Freie Universität Berlin

    Google Scholar 

  • Korduan P, Zehner ML (2008) Geoinformation im Internet. Technologien zur Nutzung raumbezogener Informationen im WWW. Wichmann, Heidelberg

    Google Scholar 

  • Krüger A, Rech A, Su XZ, Tannich E (2001) Two cases of autochthonous Plasmodium falciparum malaria in Germany with evidence for local transmission by indigenous Anopheles plumbeus. Trop Med Int Health 6:983–985

    Article  Google Scholar 

  • Leemans R (2005) Global environmental change and health. Integrating knowledge form natural, socioeconomic and medical sciences. In: Takken W, Martens P, Bogers RJ (eds) Environmental change and malaria risk. Global and local implications. Springer, Dordrecht

    Google Scholar 

  • Lindsay SW, Thomas CJ (2001) Global warming and risk of vivax malaria in Great Britain. Glob Change Hum Health 2(1):80–84

    Article  Google Scholar 

  • Lindsay SW, Parson L, Thomas CJ (1998) Mapping the ranges and relative abundance of the two principal African malaria vectors, Anopheles gambiae sensu stricto and An. arabiensis, using climate data. Proc Roy Soc Lond B, Biol Sci 265:847–854

    Article  CAS  Google Scholar 

  • MacDonald G (1956) Epidemiological basis of malaria control. Bull World Health Org 15(3–5):613–626

    CAS  Google Scholar 

  • Maier WA, Grunewald J, Habedank B, Hartelt K, Kampen H, Kimmig P, Naucke T, Oehme R, Vollmer A, Schöler A, Schmitt C (2003) Mögliche Auswirkungen von Klimaveränderung auf die Ausbreitung von primär humanmedizinisch relevanten Krankheitserregern über tierische Vektoren sowie auf die wichtigen Humanparasiten in Deutschland. Climate Change 05/03. Umweltbundesamt, Berlin

    Google Scholar 

  • Malecki JM, Kumar S, Johnson BF, Gidley ML, O’Connor TE, Petenbrink J, Bush L, Morand J, Perez MT, Pillai S, Crockett L, Blackmore C, Bradford E, Wirtz RA, Barnwell JW, DaSilva AJ, Causer LM, Parise ME (2003) Local transmission of Plasmodium vivax malaria—Palm Beach county, Florida. MMWR 52(38):908–911

    Google Scholar 

  • Martens P, Thomas C (2005) Climate change and malaria risk: complexity and scaling. In: Takken W, Martens P, Bogers RJ (eds) Environmental change and malaria risk. Global and local implications. Springer, Dordrecht

    Google Scholar 

  • Martens P, Kovats RS, Nijhof S, de Vries P, Livermore MTJ, Bradley DJ, Cox J, McMichael AJ (1999) Climate change and future population at risk of malaria. Glob Environ Change 9:89–107

    Article  Google Scholar 

  • Martin PH, Lefebvre MG (1995) Malaria and climate: sensitivity of malaria potential transmission to climate. Ambio 24:200–207

    Google Scholar 

  • Millet JP, Gercia de Olalla P, Carillo-Santisteve P, Gascón J, Treviňo B, Muňoz J, Gomez i Prat J, Cabezos J, Gonzáles Cordón A, Caylà JA (2008) Imported malaria in a cosmopolitan European city: a mirror image of the world epidemiological situation. Malar J 7:56

    Google Scholar 

  • Mühlberger N, Jelinek T, Gascon J, Probst M, Zoller T, Schunk M, Beran J, Gjørup I, Behrens RH, Clerinx J, Björkman A, McWhinney P, Matteelli A, Lopez-Velez R, Bisoffi Z, Hellgren U, Puente S, Schmid ML, Myrvang B, Holthoff-Stich ML, Laferl H, Hatz C, Kollaritsch H, Kapaun A, Knobloch J, Iversen J, Kotlowski A, Malvy DJM, Kern P, Fry G, Siikamaki H, Schulze MH, Soula G, Paul M, Gómez i Prat J, Lehmann V, Bouchaud O, da Cunha S, Atouguia J, Boecken G (2004) Epidemiology and clinical features of vivax malaria imported to Europe: sentinel surveillance data from TropNetEurop. Malar J 3:5

    Google Scholar 

  • Müller M, Augstein B (2005) Das Hamburger Umweltinformationssystem HUIS—Integration von Umweltdaten auf Basis eines GDI-Ansatzes. In: Fischer-Stabel P (ed) Umweltinformationssysteme. Wichmann, Heidelberg

    Google Scholar 

  • Omumbo JA, Hay SI, Guerra CA, Snow RW (2004) The relationship between the Plasmodium falciparum parasite ratio in childhood and climate estimates of malaria transmission in Kenya. Malar J 3:17

    Article  Google Scholar 

  • Pastor A, Pastor A, Neely J, Goodfriend D, Marr J, Jenkins S, Woolard D, Pettit D, Gaines D, Sockwell D, Garvey C, Jordan C, Lacey C, DuVernoy T, Roberts D, Robert L, Santos P, Wirtz R, MacArthur J, O’Brien M, Causer L (2002) Local transmission of Plasmodium vivax malaria—Virginia. MMWR 51(41):921–923

    Google Scholar 

  • Patz JA, Hulme M, Rosenzweig C, Mitchell TD, Goldberg RA, Githeko AK, Lele S, McMichael AJ, Le Sueur D (2002) Climate change: regional warming and malaria resurgence. Nature 420:627–628

    Article  CAS  Google Scholar 

  • Peng ZR, Tsou MH (2003) Internet GIS: distributed geographic information services for the internet and wireless networks. Wiley, Hoboken

    Google Scholar 

  • Pesch R, Schmidt G, Schröder W, Weustermann I (2011) Application of Cart in ecological landscape mapping: two case studies. Ecol Ind 11:115–122

    Article  Google Scholar 

  • Ponçon N, Tran A, Toty C, Luty AJF, Fontenille D (2008) A quantitative risk assessment approach for mosquito-borne diseases: malaria re-emergence in southern France. Malar J 7:147

    Article  Google Scholar 

  • Reiter P (2000) Malaria and global warming in perspective? Emerg Infect Dis 6:438–439

    Article  CAS  Google Scholar 

  • RKI (Robert-Koch-Institut) (1999) Zur Airport-Malaria und Baggage-Malaria. Epidemiologisches Bull 37(99):274

    Google Scholar 

  • Rogers DJ, Randolph SE (2000) The global spread of malaria in a future, warmer world. Science 289:1763–1766

    Article  CAS  Google Scholar 

  • Schmidt G, Holy M, Schröder W (2008) Vector-associated diseases in the contect of climate change: Analysis and evaluation of the differences in the potential spread of tertian malaria in the ecoregions of Lower Saxony. Ital J Public Health 5(4):245–252

    Google Scholar 

  • Schröder W, Schmidt G (2001) Defining ecoregions as framework for the assessment of 350 ecological monitoring networks in Germany by means of GIS and classification and 351 regression trees (CART). Gate to EHS 1(3):1–9

    Google Scholar 

  • Schröder W, Schmidt G (2008) Mapping the potential temperature-dependent tertian malaria transmission within the ecoregions of Lower Saxony (Germany). Int J Med Microbiol 298(S1):38–49

    Article  Google Scholar 

  • Small J, Goetz SJ, Hay SI (2003) Climatic suitability for malaria transmission in Africa 1911–1995. Proc Natl Acad Sci U S A 100(26):15341–15345

    Article  CAS  Google Scholar 

  • Smith DL, McKenzie FE (2004) Statics and dynamics of malaria infection in Anopheles mosquitoes. Malar J 3:13

    Article  Google Scholar 

  • Snow RW, Ikoku A, Omumbo J, Ouma J (1999) The epidemiology, politics and control of malaria epidemics in Kenya: 1900–1998. Roll back malaria, resource network on epidemics. World Health Organisation, Nairobi

    Google Scholar 

  • Spath D, Günther J (2005) Open Source Software—Strukturwandel oder Strohfeuer?—Eine empirische Studie zu Trends und Entwicklungen zum Einsatz von Open Source Software in der öffentlichen Verwaltung und IT-Unternehmen in Deutschland. Frauenhofer IAO. http://www.iao.fraunhofer.de/d/oss_studie.pdf. Accessed 17 June 2013

  • Takken W, Martens P, Bogers RJ (eds) (2005) Environmental change and malaria risk: global and local implications. Springer, Dordrecht

    Google Scholar 

  • Teutsch SM, Churchill RE (1994) Principles and practice of public health surveillance. Oxford University Press, New York

    Google Scholar 

  • Tran A, Ponçon N, Toty C, Linard C, Guis H, Ferré JB, Lo Seen D, Roger F, de la Rocque S, Fontenille D, Baldet T (2008) Using remote sensing to map larval and adult populations of Anopheles hyrcanus (Diptera: Culicidae) potential malaria vector in Southern France. Int J Health Geogr 7:9

    Article  Google Scholar 

  • Waller LA, Gotway CA (2004) Applied spatial statistics for public health data. Wiley, New York

    Book  Google Scholar 

  • Weyer F (1956) Bemerkungen zum Erlöschen der ostfriesischen Malaria und zur Anopheles-Lage in Deutschland. Z Tropenmed Parasitol 7:219–228

    CAS  Google Scholar 

  • WHO (World Health Organistion) (2004) Using climate to predict infectious disease outbreaks: a review. World Health Organistion, Geneva

    Google Scholar 

  • Wilke A, Kiel E, Schröder W, Kampen H (2006) Anophelinae (Diptera: Culicidae) in ausgewählten Marschgebieten Niedersachsens: Bestandserfassung, Habitatbindung und Interpolation. Mitt Dtsch Ges Allg Angew Entomol 15:357–362

    Google Scholar 

  • Williams S (2002) Free as in freedom. Richard Stallman’s crusade for free software. O′Reilly, Sebastopol, Cambridge

    Google Scholar 

  • Zoller T, Naucke TJ, May J, Hoffmeister B, Flick H, Williams CJ, Frank C, Bergmann F, Suttorp N, Mockenhaupt P (2009) Malaria transmission in non-endemic areas: case report, review of the literature and implications for public health management. Malar J 8:71

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winfried Schröder .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Schröder, W., Schmidt, G. (2014). Conclusions and Outlook. In: Modelling Potential Malaria Spread in Germany by Use of Climate Change Projections. SpringerBriefs in Environmental Science. Springer, Cham. https://doi.org/10.1007/978-3-319-03823-0_4

Download citation

Publish with us

Policies and ethics