Shape Analysis in Molecular Imaging

Chapter
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 14)

Abstract

Molecular imaging is a new research discipline enabling the visualization, characterization and quantification of biologic processes taking place at the cellular and subcellular levels within intact living subjects. Applications of molecular imaging techniques will benefit various clinical practices including classification and tracking of chemotherapy and treatment planning of radiotherapy, as well as drug discovery and development. Molecular imaging typically includes two or three dimensional imaging with quantification over time, and is often applied on molecular imaging modalities, such as Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) etc. Image series acquired with spatiotemporal distribution of molecular biomarkers must be carefully analyzed to estimate the underlying physiology-related metabolic parameters. Shape analysis is one of the most powerful tools to analyze the geometrical properties from similar shapes or different groups, and can be applied to estimate both the concentration of biomarkers and interaction between biomarkers and tissue/organs. However, some limitations from molecular imaging modalities and clinical practices still hinder the quantitative accuracy of shape analysis, e.g. the low spatial and temporal resolution in PET scan, the inaccuracy of blood samplings from patients, the low Signal-to-Noise (SNR) ratio of measurement data in dynamic PET/CT scan. In this chapter, firstly, we will introduce the definition of molecular imaging, the clinical advantages and limitations of various molecular imaging modalities, secondly, we will review the challenges in data analysis based on the data processing procedure, and explain how data corrections affect the accuracy of static and dynamic PET imaging, thirdly, the general frameworks of image processing in PET and SPECT are reviewed with focus on image reconstruction, at last, we will show some recent advancements and give examples of clinical applications.

References

  1. 1.
    Bailey D, Townsend D, Valk P, Maisey M (2005) Positron emission tomography: basic sciences. Springer, LondonCrossRefGoogle Scholar
  2. 2.
    Bailey DL, Meikle SR (1994) A convolution-subtraction scatter correction method for 3D PET. Phys Med Biol 39(3):411CrossRefGoogle Scholar
  3. 3.
    Bao Q, Newport D, Chen M, Stout DB, Chatziioannou AF (2009) Performance evaluation of the inveon dedicated PET preclinical tomograph based on the NEMA NU-4 standards. J Nucl Med 50:401–408CrossRefGoogle Scholar
  4. 4.
    Bartenstein P, Minoshima S, Hirsch C, Buch K, Willoch F, Mösch D, Schad D, Schwaiger M, Kurz A et al (1997) Quantitative assessment of cerebral blood flow in patients with Alzheimer’s disease by SPECT. J Nucl Med 38(7):1095Google Scholar
  5. 5.
    Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR, Hertenstein GK, Moutray KL, Reid K, Cullom SJ (2006) Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 13(1):24–33CrossRefGoogle Scholar
  6. 6.
    Bendriem B, Townsend DW (1998) Theor Pract 3D PET. Kluwer Academic/Plenum Publishers, New YorkCrossRefGoogle Scholar
  7. 7.
    Bentourkia M, Msaki P, Cadorette J, Lecomte R (1995) Assessment of scatter components in high-resolution PET: correction by nonstationary convolution subtraction. J Nucl Med 36(1):121–130Google Scholar
  8. 8.
    Beyer T, Tellmann L, Nickel I, Pietrzyk U (2005) On the use of positioning aids to reduce misregistration in the head and neck in whole-body PET/CT studies. J Nucl Med 46(4):596–602Google Scholar
  9. 9.
    Bonte FJ, Weiner MF, Bigio EH, White C et al (1997) Brain blood flow in the dementias: SPECT with histopathologic correlation in 54 patients. Radiology 202(3):793–797Google Scholar
  10. 10.
    Boucher L, Rodrigue S, Lecomte R, Bénard F (2004) Respiratory gating for 3-dimensional PET of the thorax: feasibility and initial results. J Nucl Med 45(2):214–219Google Scholar
  11. 11.
    Brankov JG, Galatsanos NP, Yang Y, Wernick MN (2003) Segmentation of dynamic PET or fMRI images based on a similarity metric. IEEE Trans Nucl Sci 50(5):1410–1414CrossRefGoogle Scholar
  12. 12.
    Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G, Mattfeldt T, Neumaier B, Reske SN, Hetzel M (2003) Imaging proliferation in lung tumors with PET: 18F-FLT Versus 18F-FDG. J Nucl Med 44(9):1426–1431Google Scholar
  13. 13.
    Bushong SC (1988) Magnetic resonance imaging. CV Mosby Company, St. LouisGoogle Scholar
  14. 14.
    Catafau M, Bullich S (2013) Molecular imaging PET and SPECT approaches for improving productivity of antipsychotic drug discovery and development. Curr Med Chem 20(3):378–388Google Scholar
  15. 15.
    Cobelli C, Foster D, Toffolo G (2000) Tracer kinetics in biomedical research: from data to model. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  16. 16.
    Crum W, Hartkens T, Hill D (2004) Non-rigid image registration: theory and practice. Br J Radiol 77(Suppl 2):S140–S153CrossRefGoogle Scholar
  17. 17.
    Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Grégoire V (2003) Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 69(3):247–250CrossRefGoogle Scholar
  18. 18.
    Defrise M, Casey ME, Michel C, Conti M (2005) Fourier rebinning of time-of-flight PET data. Phys Med Biol 50(12):2749CrossRefGoogle Scholar
  19. 19.
    Drever L, Roa W, McEwan A, Robinson D (2007) Iterative threshold segmentation for PET target volume delineation. Med Phys 34:1253CrossRefGoogle Scholar
  20. 20.
    Erd, YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn, R, Humm JL (1997), Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 80(S12) 2505–2509.Google Scholar
  21. 21.
    Fenster A, Downey DB (1996) 3-D ultrasound imaging: a review. IEEE Eng Med Biol Mag 15(6):41–51CrossRefGoogle Scholar
  22. 22.
    Fessler J Erdogan H (1998) A paraboloidal surrogates algorithm for convergent penalized-likelihood emission image reconstruction. In: Nuclear science symposium, 1998. Conference record. 1998 IEEE, vol 2, pp 1132–1135.Google Scholar
  23. 23.
    Freedman N, Schechter D, Klein M, Marciano R, Rozenman Y, Chisin R (2000) SPECT attenuation artifacts in normal and overweight persons: insights from a retrospective comparison of Rb-82 positron emission tomography and Tl-201 SPECT myocardial perfusion imaging. Clin Nucl Med 25(12):1019–1023CrossRefGoogle Scholar
  24. 24.
    Gao F, Liu H, Jian Y, Shi P (2009) Dynamic dual-tracer PET reconstruction. In: Information processing in medical imaging (IPMI 2009). LNCS, Vol 5636. Springer, Berlin, Heidelberg, pp 38–49Google Scholar
  25. 25.
    Gao F, Liu H, Shi P (2011) Robust estimation of kinetic parameters in dynamic PET imaging. In: Medical image computing and computer-assisted intervention–MICCAI 2011, vol 6891. pp 492–499.Google Scholar
  26. 26.
    Geets X, Lee JA, Bol A, Lonneux M, Grégoire V (2007) A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging 34(9):1427–1438CrossRefGoogle Scholar
  27. 27.
    Goerres GW, Kamel E, Heidelberg TNH, Schwitter MR, Burger C, von Schulthess GK (2002) PET-CT image co-registration in the thorax: influence of respiration. Eur J Nucl Med Mol Imaging 29(3):351–360CrossRefGoogle Scholar
  28. 28.
    Gregory R, Partridge M, Flower M (2006) Performance evaluation of the Philips Gemini PET/CT system. IEEE Trans Nucl Sci 53(1):93–101CrossRefGoogle Scholar
  29. 29.
    Gunn R, Gunn S, Turkheimer F, Aston J, Cunningham V (2002) Tracer kinetic modeling via basis pursuit. In: Senda M, Kimura Y, Herscovitch P (eds) Brain Imaging using PET. Academic Press, San DiegoGoogle Scholar
  30. 30.
    Gunn RN, Gunn SR, Cunningham VJ (2001) Positron emission tomography compartmental models. J Cereb Blood Flow Metab 21(6):635–652CrossRefGoogle Scholar
  31. 31.
    Gunn RN, Gunn SR, Turkheimer FE, Aston JA, Cunningham VJ (2002) Positron emission tomography compartmental models: A basis pursuit strategy for kinetic modeling. J Cereb Blood Flow and Metab 22(12):1425–1439CrossRefGoogle Scholar
  32. 32.
    Hajnal JV (2001) Medical image registration. CRC Press LLC, New YorkCrossRefGoogle Scholar
  33. 33.
    Han X, Xu C, Prince JL (2003) A topology preserving level set method for geometric deformable models. IEEE Trans Pattern Anal Mach Intell 25(6):755–768CrossRefGoogle Scholar
  34. 34.
    Hara N, Okuizumi M, Koike H, Kawaguchi M, Bilim V (2005) Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a useful modality for the precise detection and staging of early prostate cancer. The Prostate 62(2):140–147CrossRefGoogle Scholar
  35. 35.
    Hu Z, Shi P (2010) Sensitivity analysis for biomedical models. IEEE Trans Med Imaging 29(11):1870–1881CrossRefGoogle Scholar
  36. 36.
    Huang X, Hill NA, Ren J, Guiraudon G, Boughner D, Peters TM (2005) Dynamic 3D ultrasound and MR image registration of the beating heart. In: Medical image computing and computer-assisted intervention-MICCAI 2005. Springer, pp 171–178.Google Scholar
  37. 37.
    Huettel SA, Song AW, McCarthy G (2004) Functional magnetic resonance imaging. Sinauer Associates, SunderlandGoogle Scholar
  38. 38.
    Ibaraki M, Sugawara S, Nakamura K, Kinoshita F, Kinoshita T (2011) The effect of activity outside the field-of-view on image signal-to-noise ratio for 3D PET with 15O. Phys Med Biol 56(10):3061CrossRefGoogle Scholar
  39. 39.
    Iznaga-Escobar N (1998) \(^{188}\)Re-direct labeling of monoclonal antibodies for radioimmunotherapy of solid tumors: biodistribution, normal organ dosimetry, and toxicology. Nuc Med Biol 25(5):441–447CrossRefGoogle Scholar
  40. 40.
    Jakoby B, Bercier Y, Watson C, Bendriem B, Townsend D (2009) Performance characteristics of a new LSO PET/CT scanner with extended axial field-of-view and PSF reconstruction. IEEE Trans Nucl Sci 56(3):633–639CrossRefGoogle Scholar
  41. 41.
    Jan S, Santin G, Strul D, Staelens S, Assie K, Autret D, Avner S, Barbier R, Bardies M, Bloomfield P et al (2004) GATE: a simulation toolkit for PET and SPECT. Phys Med Biol 49(19):4543CrossRefGoogle Scholar
  42. 42.
    Jentzen W, Freudenberg L, Eising EG, Heinze M, Brandau W, Bockisch A (2007) Segmentation of PET volumes by iterative image thresholding. J Nucl Med 48(1):108–114Google Scholar
  43. 43.
    Kelloff GJ, Sigman CC (2012) Cancer biomarkers: selecting the right drug for the right patient. Nat Rev Drug Discov 11(3):201–214CrossRefGoogle Scholar
  44. 44.
    Kelly CJ, Brady M (2006) A model to simulate tumour oxygenation and dynamic [18F]-Fmiso PET data. Phys Med Biol 51(22):5859CrossRefGoogle Scholar
  45. 45.
    Kitamura K, Ishikawa A, Mizuta T, Yamaya T, Yoshida E, Murayama H (2007) Detector normalization and scatter correction for the jPET-D4: a 4-layer depth-of-interaction PET scanner. Nuc Instrum Methods Phys Res Sect A Accelerators Spectrom Detect Assoc Equip 571(1–2):231–234CrossRefGoogle Scholar
  46. 46.
    Klein S, Staring M, Murphy K, Viergever MA, Pluim JP et al (2010) Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29(1):196–205CrossRefGoogle Scholar
  47. 47.
    Koeppe RA, Gilman S, Junck L, Wernette K, Frey KA et al (2008) Differentiating Alzheimer’s disease from dementia with Lewy bodies and Parkinson’s disease with (+)-[11C] dihydrotetrabenazine positron emission tomography. Alzheimer’s and dementia J Alzheimer’s Assoc 4(Suppl 1):S67CrossRefGoogle Scholar
  48. 48.
    Krivokapich J, Smith G, Huang SC, Hoffman E, Ratib O, Phelps M, Schelbert H (1989) 13N ammonia myocardial imaging at rest and with exercise in normal volunteers. quantification of absolute myocardial perfusion with dynamic positron emission tomography. Circulation 80(5):1328–1337CrossRefGoogle Scholar
  49. 49.
    Kwakernaak H (1993) Robust control and H\(_{\infty }\)-optimization-tutorial paper. Automatica 29(2):255–273CrossRefMATHMathSciNetGoogle Scholar
  50. 50.
    Laffon E, de Clermont H, Vernejoux JM, Jougon J, Marthan R (2011) Feasibility of assessing [18F]FDG lung metabolism with late dynamic PET imaging. Mol Imaging Biol 13(2):378–384CrossRefGoogle Scholar
  51. 51.
    Leff DR, Warren OJ, Enfield LC, Gibson A, Athanasiou T, Patten DK, Hebden J, Yang GZ, Darzi A (2008) Diffuse optical imaging of the healthy and diseased breast: a systematic review. Breast Cancer Res Treat 108(1):9–22CrossRefGoogle Scholar
  52. 52.
    Lewellen T (2008) Recent developments in PET detector technology. Phys Med Biol 53:R287CrossRefGoogle Scholar
  53. 53.
    Li Z, Li Q, Yu X, Conti P, Leahy R (2009) Lesion detection in dynamic FDG-PET using matched subspace detection. IEEE Trans Med Imaging 28(2):230–240CrossRefGoogle Scholar
  54. 54.
    Lubberink M, Kosugi T, Schneider H, Ohba H, Bergström M (2004) Non-stationary convolution subtraction scatter correction with a dual-exponential scatter kernel for the Hamamatsu SHR-7700 animal PET scanner. Phys Med Biol 49(5):833CrossRefGoogle Scholar
  55. 55.
    Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16(2):187–198CrossRefGoogle Scholar
  56. 56.
    Magota K, Kubo N, Kuge Y, Nishijima KI, Zhao S, Tamaki N (2011) Performance characterization of the Inveon preclinical small-animal PET\(/\)SPECT\(/\)CT system for multimodality imaging. Eur J Nuc Med Mol Imaging 38(4):742–752CrossRefGoogle Scholar
  57. 57.
    Malladi R, Sethian JA, Vemuri BC (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17(2):158–175CrossRefGoogle Scholar
  58. 58.
    Mankoff DA (2007) A definition of molecular imaging. J Nucl Med 48(6):18N–21NGoogle Scholar
  59. 59.
    Maruyama A, Hasegawa S, Paul AK, Xiuli M, Yoshioka J, Maruyama K, Hori M, Nishimura T (2002) Myocardial viability assessment with gated SPECT Tc-99m tetrofosmin wall thickening: comparison with F-18 FDG-PET. Ann Nucl Med 16(1):25–32CrossRefGoogle Scholar
  60. 60.
    Mattes D, Haynor DR, Vesselle H, Lewellen TK, Eubank W (2003) PET-CT image registration in the chest using free-form deformations. IEEE Trans Med Imaging 22(1):120–128CrossRefGoogle Scholar
  61. 61.
    Kamasak ME, Bouman CA, Morris ED, Sauer K (2005) Direct reconstruction of kinetic parameter images from dynamic PET data. IEEE Trans Med Imaging 25:636–650CrossRefGoogle Scholar
  62. 62.
    Mena E, Turkbey B, Mani H, Adler S, Valera VA, Bernardo M, Shah V, Pohida T, McKinney Y, Kwarteng G, Daar D, Lindenberg ML, Eclarinal P, Wade R, Linehan WM, Merino MJ, Pinto PA, Choyke PL, Kurdziel KA (2012) 11C-Acetate PET/CT in localized prostate cancer: a study with MRI and histopathologic correlation. J Nucl Med 53(4):538–545CrossRefGoogle Scholar
  63. 63.
    Michel C, Sibomana M, Boi A, Bernard X, Lonneux M, Defrise M, Comtat C, Kinahan P, Townsend D (1998) Preserving poisson characteristics of PET data with weighted OSEM reconstruction. In: Nuclear science symposium, 1998. Conference record. 1998 IEEE, vol. 2. pp. 1323–1329Google Scholar
  64. 64.
    Moehrs S, Defrise M, Belcari N, Guerra AD, Bartoli A, Fabbri S, Zanetti G (2008) Multi-ray-based system matrix generation for 3D PET reconstruction. Phys Med Biol 53(23):6925CrossRefGoogle Scholar
  65. 65.
    Naidoo-Variawa S, Lehnert W, Banati RB, Meikle SR (2011) Scatter correction for large non-human primate brain imaging using microPET. Phys Med Biol 56(7):2131CrossRefGoogle Scholar
  66. 66.
    Nichols TE, Qi J, Asma E, Leahy RM (2002) Spatiotemporal reconstruction of list-mode PET data. IEEE Trans Med Imaging 21(4):396–404CrossRefGoogle Scholar
  67. 67.
    Ollinger JM (1996) Model-based scatter correction for fully 3D PET. Phys Med Biol 41:153–176CrossRefGoogle Scholar
  68. 68.
    Osher S, Fedkiw RP (2001) Level set methods: an overview and some recent results. J Comput Phys 169(2):463–502CrossRefMATHMathSciNetGoogle Scholar
  69. 69.
    Pajares G, Manuel de la Cruz J (2004) A wavelet-based image fusion tutorial. Pattern Recogn 37(9):1855–1872CrossRefGoogle Scholar
  70. 70.
    Panin V, Kehren F, Rothfuss H, Hu D, Michel C, Casey M (2006) PET reconstruction with system matrix derived from point source measurements. IEEE Trans Nucl Sci 53(1):152–159CrossRefGoogle Scholar
  71. 71.
    Parker BJ, Feng D (2005) Graph-based mumford-shah segmentation of dynamic PET with application to input function estimation. IEEE Trans Nucl Sci 52(1):79–89CrossRefGoogle Scholar
  72. 72.
    Parra L, Barrett HH (1998) List-mode likelihood: EM algorithm and image quality estimation demonstrated on 2-D PET. IEEE Trans Med Imaging 17(2):228–235CrossRefGoogle Scholar
  73. 73.
    Pellizzari C, Levin DN, Chen GT, Chen CT (1993) Image registration based on anatomic surface matching. In Maciunas RJ (ed) Interactive image-guided neurosurgery. AANS, Park Ridge, pp 47–62Google Scholar
  74. 74.
    Pichler BJ, Kolb A, Nagele T, Schlemmer HP (2010) PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med 51(3):333–336CrossRefGoogle Scholar
  75. 75.
    Pietrzyk U, KarlHerholz G, AndreasJacobs R (1994) Image registration: Validation for PET, SPECT, MRI and CT brain studies. J Nucl Med 35(12):2011–2018Google Scholar
  76. 76.
    Rahmim A, Rousset O, Zaidi H (2007) Strategies for motion tracking and correction in PET. PET Clin 2(2):251–266CrossRefGoogle Scholar
  77. 77.
    Rahmim A, Tang J, Zaidi H (2009) Four-dimensional (4D) image reconstruction strategies in dynamic PET: beyond conventional independent frame reconstruction. Med Phys 36(8):3654CrossRefGoogle Scholar
  78. 78.
    Schmitt JM (1999) Optical coherence tomography (OCT): a review. IEEE J Sel Top Quantum Electron 5(4):1205–1215CrossRefGoogle Scholar
  79. 79.
    Shen X, Deng L (1997) Game theory approach to discrete H\(_{\infty }\) filter design. IEEE Trans Sig Process 45:1092–1095CrossRefGoogle Scholar
  80. 80.
    Simon D (2006) Optimal state estimation: Kalman, H\(_{\infty }\) and nonlinear approaches. Wiley, Hoboken, New JerseyGoogle Scholar
  81. 81.
    Sossi V, Barney J, Harrison R, Ruth T (1995) Effect of scatter from radioactivity outside of the field of view in 3D PET. IEEE Trans Nucl Sci 42(4):1157–1161CrossRefGoogle Scholar
  82. 82.
    Spinks TJ, Miller MP, Bailey DL, Bloomfield PM, Livieratos L, Jones T (1998) The effect of activity outside the direct field of view in a 3D-only whole-body positron tomograph. Phys Med Biol 43(4):895CrossRefGoogle Scholar
  83. 83.
    Meikle SR, Matthews JC, Cunningham VJ, Bailey DL, Livieratos L, Jones T, Price P (1998) Parametric image reconstruction using spectral analysis of PET projection data. Phyis Med Biol 43 651–666Google Scholar
  84. 84.
    Strauss LG, Pan L, Cheng C, Haberkorn U, Dimitrakopoulou-Strauss A (2011) Shortened acquisition protocols for the quantitative assessment of the 2-tissue-compartment model using dynamic PET/CT 18F-FDG studies. J Nucl Med 52(3):379–385CrossRefGoogle Scholar
  85. 85.
    Su KH, Wu LC, Lee JS, Liu RS, Chen JC (2009) A novel method to improve image quality for 2-D small animal PET reconstruction by correcting a monte carlo-simulated system matrix using an artificial neural network. IEEE Trans Nucl Sci 56(3):704–714CrossRefGoogle Scholar
  86. 86.
    Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. Cambridge University Press, CambridgeGoogle Scholar
  87. 87.
    Teras M, Tolvanen T, Johansson J, Williams J, Knuuti J (2007) Performance of the new generation of whole-body PET/CT scanners\(:\) Discovery STE and Discovery VCT. Eur J Nucl Med Mol Imaging 34(10):1683–1692CrossRefGoogle Scholar
  88. 88.
    Tharp K, Israel O, Hausmann J, Bettman L, Martin W, Daitzchman M, Sandler M, Delbeke D (2004) Impact of 131I-SPECT/CT images obtained with an integrated system in the follow-up of patients with thyroid carcinoma. Eur J Nucl Med Mol Imaging 31(10):1435–1442CrossRefGoogle Scholar
  89. 89.
    Townsend DW, Beyer T (2002) A combined PET/CT scanner: the path to true image fusion. Br J Radiol 75(suppl 9):S24–S30Google Scholar
  90. 90.
    Townsend DW, Carney JP, Yap JT, Hall NC (2004) PET/CT today and tomorrow. J Nucl Med 45(1 suppl):4S–14SGoogle Scholar
  91. 91.
    Tsoumpas C, Turkheimer F, Thielemans K (2008) A survey of approaches for direct parametric image reconstruction in emission tomography. Med Phys 35:3963CrossRefGoogle Scholar
  92. 92.
    Valk P, Delbeke D, Bailey D, Townsend D, Maisey M (2006) Positron emission tomography: clinical practice. Springer, LondonGoogle Scholar
  93. 93.
    Villemagne VL, Rothman RB, Yokoi F, Rice KC, Matecka D, Dannals RF, Wong DF (1999) Doses of GBR12909 that suppress cocaine self-administration in non-human primates substantially occupy dopamine transporters as measured by [11C] WIN35, 428 PET scans. Synapse 32(1):44–50CrossRefGoogle Scholar
  94. 94.
    Wahl RL, Buchanan JW (2002) Principles and practice of positron emission tomography. Lippincott Williams and Wilkins, PhiladelphiaGoogle Scholar
  95. 95.
    Wahl RL, Quint LE, Cieslak RD, Aisen AM, Koeppe RA, Meyer CR et al (1993) "Anatometabolic" tumor imaging: fusion of FDG PET with CT or MRI to localize foci of increased activity. J Nucl Med 34(7):1190Google Scholar
  96. 96.
    Wang G, Qi J (2009) Generalized algorithms for direct reconstruction of parametric images from dynamic PET data. IEEE Trans Med Imaging 28(11):1717–1726CrossRefGoogle Scholar
  97. 97.
    Wang S, Summers R (2012) Machine learning and radiology. Med Image Anal 16:933–951CrossRefGoogle Scholar
  98. 98.
    Watson C (2000) New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci 47:1587–1594CrossRefGoogle Scholar
  99. 99.
    Wiering M, van Otterlo M (2012) Reinforcement learning: state-of-the-art, vol 12. Springer, LondonGoogle Scholar
  100. 100.
    Willmann JK, Van Bruggen N, Dinkelborg LM, Gambhir SS (2008) Molecular imaging in drug development. Nat Rev Drug Discov 7(7):591–607CrossRefGoogle Scholar
  101. 101.
    Wong KP, Feng D, Meikle SR, Fulham MJ (2002) Segmentation of dynamic PET images using cluster analysis. IEEE Trans Nucl Sci 49(1):200–207CrossRefGoogle Scholar
  102. 102.
    Wu H, Pal DO, Sullivan J, Tai YC (2008) A feasibility study of a prototype PET insert device to convert a general-purpose animal PET scanner to higher resolution. J Nucl Med 49(1):79–87CrossRefGoogle Scholar
  103. 103.
    Yan, J, Planeta-Wilson B, Gallezot J, Carson R (2010) Initial evaluation of direct 4D parametric reconstruction with human PET data. In: Nuclear science symposium conference record (NSS/MIC), 2009 IEEE. pp 2503–2506Google Scholar
  104. 104.
    Yang DJ, Azhdarinia A, Kim EE (2005) Tumor specific imaging using Tc-99m and Ga-68 labeled radiopharmaceuticals. Curr Med Imaging Rev 1(1):25–34Google Scholar
  105. 105.
    Yang J, Staib LH, Duncan JS (2004) Neighbor-constrained segmentation with level set based 3-D deformable models. IEEE Trans Med Imaging 23(8):940–948Google Scholar
  106. 106.
    Zaidi H, El Naqa I (2010) PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging 37:2165–2187Google Scholar
  107. 107.
    Zhang L, Staelens S, Holen RV, Beenhouwer JD, Verhaeghe J, Kawrakow I, Vandenberghe S (2010) Fast and memory-efficient monte carlo-based image reconstruction for whole-body PET. Med Phys 37(7):3667Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Rochester Institute of TechnologyRochesterUSA

Personalised recommendations