Skip to main content

The Multi-parameterized Cluster Editing Problem

  • Conference paper
Combinatorial Optimization and Applications (COCOA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8287))

Abstract

The Cluster Editing problem seeks a transformation of a given undirected graph into a transitive graph via a minimum number of edge-edit operations. Existing algorithms often exhibit slow performance and could deliver clusters of no practical significance, such as singletons. A constrained version of Cluster Editing is introduced, featuring more input parameters that set a lower bound on the size of a clique-cluster as well as upper bounds on the amount of both edge-additions and deletions per vertex. The new formulation allows us to solve Cluster Editing (exactly) in polynomial time when edge-edit operations per vertex is smaller than half the minimum cluster size. Moreover, we address the case where the new edge addition and deletion bounds (per vertex) are small constants. We show that Cluster Editing has a linear-size kernel in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Böcker, S., Briesemeister, S., Bui, Q.B.A., Truss, A.: Going weighted: Parameterized algorithms for cluster editing. Theor. Comput. Sci. 410(52), 5467–5480 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Böcker, S.: A golden ratio parameterized algorithm for cluster editing. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2011. LNCS, vol. 7056, pp. 85–95. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Böcker, S., Briesemeister, S., Klau, G.W.: Exact algorithms for cluster editing: Evaluation and experiments. Algorithmica 60(2), 316–334 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao, Y., Chen, J.: Cluster editing: Kernelization based on edge cuts. Algorithmica 64(1), 152–169 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, J., Meng, J.: A 2k kernel for the cluster editing problem. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 459–468. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)

    Google Scholar 

  8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)

    Google Scholar 

  9. Ghrayeb, A.: Improved search-tree algorithms for the cluster edit problem. MS thesis, Lebanese American University (2011)

    Google Scholar 

  10. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: Exact algorithms for clique generation. Theor. Comp. Sys. 38(4), 373–392 (2005)

    Article  MATH  Google Scholar 

  11. Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comput. Sci. 410(8-10), 718–726 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications. Discrete Applied Mathematics 160(15), 2259–2270 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Krivánek, M., Morávek, J.: NP -hard problems in hierarchical-tree clustering. Acta Inf. 23(3), 311–323 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Langston, M.A.: Private communication (2012)

    Google Scholar 

  15. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford University Press (2006)

    Google Scholar 

  16. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Applied Mathematics 144(1-2), 173–182 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. van Rooij, J.M.M., Bodlaender, H.L.: Exact algorithms for edge domination. Algorithmica 64(4), 535–563 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Abu-Khzam, F.N. (2013). The Multi-parameterized Cluster Editing Problem. In: Widmayer, P., Xu, Y., Zhu, B. (eds) Combinatorial Optimization and Applications. COCOA 2013. Lecture Notes in Computer Science, vol 8287. Springer, Cham. https://doi.org/10.1007/978-3-319-03780-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03780-6_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03779-0

  • Online ISBN: 978-3-319-03780-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics