Skip to main content

Modulation of Plant Growth and Metabolism in Cadmium-Enriched Environments

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology

Abstract

The term “heavy metal” refers to an element that usually has an atomic number greater than 20 and a density higher than 5.0 g cm−3. Anthropogenic activities are the main source of heavy metal release, and such releases may cause considerable damage to ecosystems (Tyler et al. 1989; Zhang et al. 2009; Olubunmi and Olorunsola 2010; Lin et al. 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas W, Ashraf M, Akram NA (2010) Alleviation of salt-induced adverse effects in eggplant (Solanum melongena L.) by glycinebetaine and sugarbeet extracts. Sci Hort 125:188–195

    CAS  Google Scholar 

  • Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F (2012) Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 30:524–540

    CAS  Google Scholar 

  • Aidid SB, Okamoto H (1992) Effects of lead, cadmium and zinc on the electric membrane potential at the xylem: symplast interface and cell elongation of Impatiens balsamina. Environ Exp Bot 32:439–448

    CAS  Google Scholar 

  • Aidid SB, Okamoto H (1993) Responses of elongation growth rate, turgor pressure and cell wall extensibility of stem cells of Impatiens balsamina to lead, cadmium and zinc. Biometals 6:245–249

    CAS  Google Scholar 

  • Ai-jun L, Xu-hong Z, Mei-mei C, Qing C (2007) Oxidative stress and DNA damages induced by cadmium accumulation. J Environ Sci 19:596–602

    Google Scholar 

  • Akay A, Koleli N (2007) Interaction between cadmium and zinc in barley (Hordeum vulgare L.) grown under field conditions. Bangladesh J Bot 36:13–19

    Google Scholar 

  • Akram NA, Ashraf M (2011a) Pattern of accumulation of inorganic elements in sunflower (Helianthus annuus L.) plants subjected to salt stress and exogenous application of 5-aminolevulinic acid. Pak J Bot 43:521–530

    CAS  Google Scholar 

  • Akram NA, Ashraf M (2011b) Improvement in growth, chlorophyll pigments and photosynthetic performance in salt-stressed plants of sunflower (Helianthus annuus L.) by foliar application of 5-aminolevulinic acid. Agrochimica 55:94–104

    CAS  Google Scholar 

  • Akram NA, Ashraf M (2013) Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid (ALA). J Plant Growth Regul 32:663–679

    CAS  Google Scholar 

  • Akram NA, Ashraf M, Al-Qurainy F (2012) Aminolevulinic acid-induced regulation in some key physiological attributes and activities of antioxidant enzymes in sunflower (Helianthus annuus L.) under saline regimes. Sci Hort 142:143–148

    CAS  Google Scholar 

  • Al-Hakimi AMA (2007) Modification of cadmium toxicity in pea seedlings by kinetin. Plant Soil Environ 53:129–135

    CAS  Google Scholar 

  • Ali G, Srivastava PS, Iqbal M (1998) Effect of cadmium and copper on growth of Bacopa monnieri. Biol Plant 41:635–639

    CAS  Google Scholar 

  • Alia P, Saradhi PP (1991) Proline accumulation under heavy metal stress. J Plant Physiol 138:554–558

    CAS  Google Scholar 

  • Andelkovic T, Nikolic R, Bojic A, Andelkovic D, Nikolic G (2010) Binding of cadmium to soil humic acid as a function of carboxyl group content. Maced J Chem Chem Eng 29:215–224

    CAS  Google Scholar 

  • Andersen HR, Andersen O (1988) Effect of cadmium chloride on hepatic lipid peroxidation in mice. Pharmacol Toxicol 63:173–177

    CAS  Google Scholar 

  • Aravind P, Prasad MNV (2005) Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiol Biochem 43:107–116

    CAS  Google Scholar 

  • Archambault DJ, Marentes E, Buckley W, Clarke J, Taylor GJ (2001) A rapid, seedling-based bioassay for identifying low cadmium-accumulating individuals of durum wheat (Triticum turgidum L.). Euphytica 117:175–182

    CAS  Google Scholar 

  • Arduini I, Masoni A, Mariotti M, Ercoli L (2004) Low cadmium application increase miscanthus growth and cadmium translocation. Environ Exp Bot 52:89–100

    CAS  Google Scholar 

  • Arora K, Sharma S (2009) Toxic metal (Cd) removal from soil by AM fungi inoculated sorghum. Asian J Exp Sci 23:341–348

    CAS  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase-hydrogen peroxide scavenging enzyme in plants. Physiol Plant 85:235–241

    CAS  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    CAS  Google Scholar 

  • Ashraf M, Akram NA, Arteca RN, Foolad MR (2010) The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit Rev Plant Sci 29:162–190

    CAS  Google Scholar 

  • Atal N, Saradhi PP, Mohanty P (1993) Effect of iron on photosystem II mediated photochemical activities and proline levels in wheat seedlings during Cd2+ stress. In: Proceedings of the DAE symposium on photosynthesis and plant molecular biology, Bhabha Atomic Research Centre, Bombay, pp 1–5

    Google Scholar 

  • Badisa VLD, Latinwo LMO, Caroline O, Ikediobi CO, Badisa RB, Ayuk-Takem LT, Nwoga J, West J (2007) Mechanism of DNA damage by cadmium and interplay of antioxidant enzymes and agents. Environ Toxicol 22:144–215

    CAS  Google Scholar 

  • Bagchi D, Bagchi M, Hassoun EA, Stohs SJ (1996) Cadmium-induced excretion of urinary lipid metabolites, DNA damage, glutathione depletion and hepatic lipid peroxidation in sprague –Dawley rats. Biol Trace Elem Res 52:143–154

    CAS  Google Scholar 

  • Balaknina T, Kosobryukhov A, Ivanov A, Kreslauskii V (2005) The effect of cadmium on CO2 exchange, variable fluorescence of chlorophyll and the level of antioxidant enzymes in pea leaves. Russ J Plant Physiol 52:15–20

    Google Scholar 

  • Banfalvi G, Ujvarosi K, Trencsenyi G, Somogyi C, Nagy G, Basnakian A (2007) Cell culture density dependent toxicity and chromatin changes upon cadmium treatment in murine pre-B-cells. Apoptosis 12:1219–1228

    CAS  Google Scholar 

  • Banu MNA, Hoque MA, Watanabe-Sugimoto M, Matsuoka K, Nakamura Y, Shimoishi Y (2009) Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. J Plant Physiol 166:146–156

    CAS  Google Scholar 

  • Barceló J, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13:1–37

    Google Scholar 

  • Barceló J, Poschenrieder C, Andreu I, Gunsé B (1986) Cadmium-induced decrease of water stress resistance in bush bean plants (Phaseolus vulgaris L. cv. Contender). I. Effects of Cd on water potential, relative water content and cell wall elasticity. J Plant Physiol 125:17–25

    Google Scholar 

  • Batool S, Ashraf M, Akram NA, Al-Qurainy F (2013) Salt-induced changes in growth, some key physio-biochemical attributes, activities of enzymatic and levels of non-enzymatic antioxidants in cauliflower (Brassica oleracea L.). J Hort Sci Biotechnol 88:231–241

    CAS  Google Scholar 

  • Bauddh K, Singh RP (2011) Differential toxicity of cadmium to mustard (Brassica juncia L.) genotypes under higher metal levels. J Environ Biol 32:355–362

    CAS  Google Scholar 

  • Bavi K, Kholdebarin B, Moradshahi A (2011) Effect of cadmium on growth protein content and peroxidase activity in pea plants. Pak J Bot 43:1467–1470

    CAS  Google Scholar 

  • Berg AH, Combs TP, Scherer PE (2002) ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab 13:84–89

    CAS  Google Scholar 

  • Berger V, Bremaeker ND, Larondelle Y, Trouet A, Schneider Y (2000) Transport Mechanisms of the imino acid l-proline in the human intestinal epithelial caco-2 cell line. J Nutr 130:2772–2779

    CAS  Google Scholar 

  • Bhattacharjee S, Mukherjee AK (2003) Heavy metals alter photosynthetic pigment profiles as well as activities of chlorophyllase and 5-aminolevulinic acid dehydratase (ALAD) in Amaranthus lividus seedlings. J Environ Biol 24:395–399

    CAS  Google Scholar 

  • Bhattacharya M, Chaudhuri MA (1995) Heavy metal (Pb2+ and Cd2+) stress-induced damages in Vigna seedlings and possible involvement of phytochelation-like substances in mitigation of heavy metal stress. Indian J Environ Bull 33:236–238

    Google Scholar 

  • Bhattacharyya M, Choudhuri MA (1994) Effect of lead and cadmium on the biochemical changes in the leaves of terrestrial Vigna and aquatic Hydrilla plants under solution culture. J Plant Physiol 37:99–103

    CAS  Google Scholar 

  • Bingham FT, Page AL, Strong JE (1980) Yield and cadmium content of rice grain in relation to addition rates of cadmium, copper, nickel with sewage sludge and liming. Soil Sci 130:32

    CAS  Google Scholar 

  • Bork U, Lee WK, Kuchler A, Dittmar T, Thevenod F (2010) Cadmium-induced DNA damage triggers G2/M arrest via chk1/2 and cdc2 in p53-deficient kidney proximal tubule cells. Am J Physiol Renal Physiol 298:F255–F265

    CAS  Google Scholar 

  • Brune A, Urbach W, Dietz KJ (1995) Differential toxicity of heavy metals is partly related to a loss of preferential extraplasmic compartmentation: a comparison of Cd-, Mo-, Ni- and Zn-stress. New Phytol 129:404–409

    Google Scholar 

  • Burzynski M, Zurek A (2007) Effects of copper and cadmium on photosynthesis in cucumber cotyledons. Photosynthetica 45:239–244

    CAS  Google Scholar 

  • Cailliatte R, Schikora A, Briat J, Mari S, Curie C (2010) High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell 22:904–917

    CAS  Google Scholar 

  • Cameron JC, Pakrasi HB (2010) Glutathione in Synechocystis 6803: a closer look into the physiology of a ∆gshB mutant. Plant Signal Behav 6:89–92

    Google Scholar 

  • Carlson RW, Bazzaz FA (1977) Growth reduction in American sycamore (Plantanus occidentalis L.) caused by Pb-Cd interaction. Environ Pollut 12:243–253

    CAS  Google Scholar 

  • Cataldo DA, Garland TR, Wildung RE (1981) Cadmium distribution and chemical fate in soybean plants. Plant Physiol 68:835–839

    CAS  Google Scholar 

  • Chakravarty B, Srivastava S (1997) Effect of cadmium and zinc interaction on metal uptake and regeneration of tolerant plants in linseed. Agric Ecosyst Environ 61:45–50

    CAS  Google Scholar 

  • Chaoui A, El Ferjani E (2005) Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum sativum L.) seedlings. Crit Rev Biol 328:23–31

    CAS  Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, El Ferjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147

    Google Scholar 

  • Chen Y, Huerta AJ (1997) Effects of sulfur nutrition on photosynthesis in cadmium-treated barley seedlings. J Plant Nutr 20:845–856

    CAS  Google Scholar 

  • Chen X, Wang J, Shi Y, Zhao MQ, Chi GY (2011) Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard. Bot Stud 52:41–46

    Google Scholar 

  • Chien HF, Wang JW, Lin CC, Kao CH (2001) Cadmium toxicity of rice leaves is mediated through lipid peroxidation. Plant Growth Regul 33:205–213

    CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    CAS  Google Scholar 

  • Clemens S, Aarts MJM, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99

    CAS  Google Scholar 

  • Clijsters H, Van-Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7:31–40

    CAS  Google Scholar 

  • Cobbett CS, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    CAS  Google Scholar 

  • Cook M, Morrow H (1995) Anthropogenic sources of cadmium to the Canadian environment. In: Workshop proceedings, National workshop on cadmium transport into plants, Canadian Network of Toxicology Centres, Ottawa

    Google Scholar 

  • Cosio C, Vollenweider P, Keller C (2006) Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.) I. Macrolocalization and phytotoxic effects of cadmium. Environ Exp Bot 58:64–74

    CAS  Google Scholar 

  • Costa G, Morel JL (1994) Water relations gas exchange and amino acid content in Cd treated lettuca. Plant Physiol Biochem 32:561–570

    CAS  Google Scholar 

  • Costa G, Spitz E (1997) Influence of cadmium on soluble carbohydrates, free amino acids, protein content of in vitro cultured Lupinus albus. Plant Sci 128:131–140

    CAS  Google Scholar 

  • Dahlin C, Aronsson H, Almkvist J, Sundqvist C (2000) Protochlorophyllide-independent import of two NADPH: Pchlide oxidoreductase proteins (PORA and PORB) from barley into isolated plastids. Physiol Plant 109:298–303

    CAS  Google Scholar 

  • Dar SH, Agnihotri RK, Sharma R, Ahmad S (2010) Nickel and lead induced variations in pigment composition of Triticum aestivum L. Res J Agric Sci 1:128–131

    Google Scholar 

  • de Knecht JA, van Dillen M, Koevoets PLM, Schat H, Verkleij JAC, Ernst WHO (1994) Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris. Chain length distribution and sulphide incorporation. Plant Physiol 104:255–261

    Google Scholar 

  • Deckert J (2005) Cadmium toxicity in plants: is there any analogy to its carcinogenic effect in mammalian cells? BioMetals 18:475–481

    CAS  Google Scholar 

  • Demiral T, Turkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257

    CAS  Google Scholar 

  • Dhir B, Sharmila P, Pardha Saradhi P, Nasim SA (2009) Physiological and antioxidant responses of Salvinia natans exposed to chromium-rich wastewater. Ecotoxicol Environ Saf 72:1790–1797

    CAS  Google Scholar 

  • Di Cagno R, Guidi L, Stefani A, Soldatini GF (1999) Effects of cadmium on growth of Helianthus annuus seedlings: physiological aspects. New Phytol 144:65–71

    Google Scholar 

  • Dong J, Wu F, Zhang G (2005) Effect of cadmium on growth and photosynthesis of tomato seedlings. J Zhejiang Univ Sci B 6:974–980

    Google Scholar 

  • Dube A, Zbytniewski R, Kowalkowski T, Cukrowska E, Buszewski B (2001) Adsorption and migration of heavy metals in soil. Pol J Environ Stud 10:1–10

    CAS  Google Scholar 

  • Duman F, Aksoy A, Aydin Z, Temizgul R (2011) Effects of exogenous glycinebetaine and trehalose on cadmium accumulation and biological responses of an aquatic plant (Lemna gibba L.). Water Air Soil Pollut 217:545–556

    CAS  Google Scholar 

  • Environmental Protection Agency (2007) (eds) Monitored natural attenuation of inorganic contaminants in ground water. In: Ford RG, Wilkin RT, Puls RW (eds). U.S. Office of Research and Development, National Risk Management Research Laboratory, Ada, Oklahoma 74820

    Google Scholar 

  • Erdei L, Tari I, Csiszár J, Pécsváradi A, Horváth F, Szabó M, Ördög M, Cseuz L, Zhiponova M, Szilák L, Györgyey J (2002) Osmotic stress responses of wheat species and cultivars differring in drought tolerance: some interesting genes (advices for gene hunting). Acta Biol Szeged 46:63–65

    Google Scholar 

  • Ergün N, Öncel I (2012) Effects of some heavy metals and heavy metal hormone interactions on wheat (Triticum aestivum L. cv. Gun 91) seedlings. Afr J Agric Res 7:1518–1523

    Google Scholar 

  • Eshghi S, Mahmoodabadi MR, Abdi GR, Jamali B (2010) Zeolite ameliorates the adverse effect of cadmium contamination on growth and nodulation of soybean plant (Glycine max L.). J Biol Environ Sci 4:43–50

    Google Scholar 

  • Faizan S, Kausar S, Perveen R (2011) Varietal differences for cadmium-induced seedling mortality, foliar toxicity symptoms, plant growth, proline and nitrate reductase activity in chickpea (Cicer arietinum L.). Biol Med 3:196–206

    CAS  Google Scholar 

  • Faller P, Kienzler K, Krieger-Liszkay A (2005) Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of photosystem II by competitive binding to the essential Ca2+ site. Biochim Biophys Acta 1706:158–164

    CAS  Google Scholar 

  • Farago ME, Mullen WA (1979) Plants which accumulate metals. Part IV. A possible copper-proline complex from the roots of Armeria maritima. Inorg Chim Acta 32:L93–L94

    CAS  Google Scholar 

  • Fernandez O, Béthencourt L, Quero A, Sangwan RS, Clément C (2010) Trehalose and plant stress responses: friend or foe? Trends Plant Sci 15:409–417

    CAS  Google Scholar 

  • Fodor E, Szabo-Nagy A, Erdei L (1995) The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots. J Plant Physiol 147:87–92

    CAS  Google Scholar 

  • Franklin NM, Stauber JL, Lim RP, Petocz P (2002) Toxicity of metal mixtures to a tropical freshwater alga (Chlorella sp.): the effect of interactions between copper, cadmium, and zinc onmetal cell binding and uptake. Environ Toxicol Chem 21:2412–2422

    CAS  Google Scholar 

  • Frostegard A, Tunlid A, Baath E (1993) Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617

    CAS  Google Scholar 

  • Fuhrer J (1982) Ethylene biosynthesis and cadmium toxicity in leaf tissue of beans Phaseolus vulgaris L. Plant Physiol 70:162–167

    CAS  Google Scholar 

  • Galili G, Höfgen R (2002) Metabolic engineering of amino acids and storage proteins in plants. Metab Eng 4:3–11

    CAS  Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence of involvement of oxidative stress. Plant Sci 121:151–159

    CAS  Google Scholar 

  • Ghani A (2010) Effect of cadmium toxicity on the growth and yield components of mungbean [Vigna radiata (L.) Wilczek]. World Appl Sci J 8:26–29

    CAS  Google Scholar 

  • Garcia MJ, Page A (1978) Sorption of trace quantities of cadmium by soils with different chemical and mineralogical composition. Water Air Soil Pollut 9:289–299

    Google Scholar 

  • Ghosh M, Singh SP (2005) A comparative study of cadmium phytoextraction by accumulator and weed species. Environ Pollut 133:365–371

    CAS  Google Scholar 

  • Gichner T, Znidar I, Száková J (2008) Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants. Mutat Res Genet Toxicol Environ Mutagen 652:186–190

    CAS  Google Scholar 

  • Gill R, Malik KA, Sanago MHM, Saxena PK (1995) Somatic embryogenesis and plant regeneration from seedling cultures of tomato (Lycopersicon esculentum Mill.). J Plant Physiol 147:273–276

    CAS  Google Scholar 

  • Gill SS, Khan NA, Tuteja N (2011) Differential cadmium stress tolerance in five Indian mustard (Brassica juncea L.) cultivars: an evaluation of the role of antioxidant machinery. Plant Signal Behav 6:293–300

    CAS  Google Scholar 

  • Goncalves JF, Becker AG, Cargnelutti D, Tabaldi LA, Pereira LB, Battisti V, Spanevello RM, Morsch VM, Nicoloso FT, Schetinger MRC (2007) Cadmium toxicity causes oxidative stress and induces response of the antioxidant system in cucumber seedlings. Braz J Plant Physiol 19:24–26

    Google Scholar 

  • Gouia H, Suzuki A, Brulfert J, Ghorbal MH (2003) Effects of cadmium on the co-ordination of nitrogen and carbon metabolism in bean seedlings. J Plant Physiol 160:367–376

    CAS  Google Scholar 

  • Gratao PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    CAS  Google Scholar 

  • Groppa MD, Tomaro ML, Benavides MP (2001) Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci 161:481–488

    CAS  Google Scholar 

  • Guo GL, Zhou QX (2003) Advances of research on combined pollution in soil-plant systems. Chin J Appl Ecol 14:823–828

    CAS  Google Scholar 

  • Guo-sheng S, Hassan MJ, Xiu-fu Z, Guo-ping Z (2004) Effects of cadmium stress on plant growth and antioxidative enzyme system in different rice genotypes. Chin J Rice Sci 18:239–244

    Google Scholar 

  • Hall JL (2002) Cellular mechanism for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    CAS  Google Scholar 

  • Hall DO, Rao KK (1999) Photosynthesis, 6th edn. Cambridge University Press, Cambridge, pp 1–5

    Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613

    CAS  Google Scholar 

  • Halloin JM, De Zpeten GA, Guard G (1970) The effects of tentoxin on chlorophyll synthesis and plastid structure in cucumber and cabbage. Plant Physiol 45:310–314

    CAS  Google Scholar 

  • Handique GK, Handique AK (2009) Proline accumulation in lemongrass (Cymbopogon flexuosus Stapf.) due to heavy metal stress. J Environ Biol 30:299–302

    CAS  Google Scholar 

  • Harris NS, Taylor GJ (2004) Cadmium uptake and translocation in seedlings of near isogenic lines of durum wheat that differ in grain cadmium accumulation. BMC Plant Biol 4:1–12

    Google Scholar 

  • Hartwig A, Schlepegrell R, Dally H, Hartmann M (1996) Interaction of carcinogenic metal compounds with deoxyribonucleic acid repair processes. Ann Clin Laborat Sci 26:31–38

    CAS  Google Scholar 

  • Hasan SA, Ali B, Hayat S, Ahmad A (2007) Cadmium induced changes in the growth and carbonic anhydrase activity of chickpea. Turk J Biol 31:137–140

    CAS  Google Scholar 

  • Hasan SA, Hayat S, Ali B, Ahmad A (2008) 28-Homobrassinolide protect chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidant. Environ Pollut 151:60–66

    CAS  Google Scholar 

  • Hasan SA, Hayat S, Ahmad A (2011) Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere 84:1446–1451

    CAS  Google Scholar 

  • Hattab S, Dridi B, Chouba L, Kheder MB, Bousetta H (2009) Photosynthesis and growth responses of pea Pisum sativum L. under heavy metals stress. J Environ Sci 21:1552–1556

    CAS  Google Scholar 

  • Hayat S, Ali B, Hasan SA, Ahmad A (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Expt Bot 60:33–41

    CAS  Google Scholar 

  • Hayat S, Alyemeni MN, Hasan SA (2012) Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi J Biol Sci 19:325–335

    CAS  Google Scholar 

  • He J, Li H, Luo J, Ma C, Li S, Qu L, Gai Y, Jiang X, Janz D, Polle A, Tyree M, Luo Z (2013) A transcriptomic network underlies microstructural and physiological responses to cadmium in Populus x canescens. Plant Physiol 162:424–439

    CAS  Google Scholar 

  • Heckathorn SA, Muller JK, Laguidice S, Zhu B, Berrett T, Blair B, Dong J (2004) Chloroplast small heatshock proteins protect photosynthesis during heavy metal stress. Am J Bot 91:1312–1318

    CAS  Google Scholar 

  • Heise J, Krejci S, Miersch J, Krauss GJ, Humbeck K (2007) Gene expression of metallothioneins in barley during senescence and heavy metal treatment. Crop Sci 47:1111–1118

    CAS  Google Scholar 

  • Hendy GAF, Baker AJM, Evart CF (1992) Cadmium tolerance and toxicity, oxygen radical processes and molecular damage in cadmium tolerant and cadmium-sensitive clones of Holcus lanatus. Acta Bot Neerl 41:271–281

    Google Scholar 

  • Hengstler JG, Bolm-Audorff U, Faldum A, Janssen K, Reifenrath M, Gotte W, Jung D, Mayer-Popken O, Fuchs J, Gebhard S (2003) Occupational exposure to heavy metals: DNA damage induction and DNA repair inhibition prove co-exposures to cadmium, cobalt and lead as more dangerous than hitherto expected. Carcinogenesis 24:63–73

    CAS  Google Scholar 

  • Hirt H, Casari G, Barta A (1989) Cadmium-enhanced gene expression in suspension-culture cells of tobacco. Planta 179:414

    CAS  Google Scholar 

  • Horsfall M Jr, Abia AA (2003) Sorption of cadmium (II) and zinc (II) ions from aqueous solutions by cassava waste biomass (Manihot esculenta Vanz). Water Res 37:4913–4923

    CAS  Google Scholar 

  • Horvath G, Droppa M, Oraveez A, Raskin VI, Marder JB (1996) Formation of the photosynthetic apparatus during greening of cadmium-poisoned barley leaves. Planta 199:238–243

    CAS  Google Scholar 

  • Hussain I, Iqbal M, Qurat-ul-ain S, Rasheed R, Mahmood S, Perveen A, Wahid A (2012) Cadmium dose and exposure-time dependent alterations in growth and physiology of maize (Zea mays). Int J Agric Biol 14:959–964

    CAS  Google Scholar 

  • Hutchings D, Rawsthorne S, Emes MJ (2005) Fatty acid synthesis and the oxidative pentose phosphate pathway in developing embryos of oilseed rape (Brassica napus L.). J Exp Bot 56:577–585

    CAS  Google Scholar 

  • Hynek D, Krejcova L, Sochor J, Cernei N, Kynicky J, Adam V, Trnkova L, Hubalek J, Vrba R, Kizek R (2012) Study of interactions between cysteine and cadmium (II) ions using automatic pipetting system off-line coupled with electrochemical analyser. Int J Electrochem Sci 7:1802–1819

    CAS  Google Scholar 

  • IARC (1993) Cadmium and cadmium compounds. In: Beryllium, cadmium, mercury and exposures in the glass manufacturing industry, vol 58, IARC monographs on the evaluation of carcinogenic risk of chemicals to humans. International Agency for Research on Cancer, Lyon, pp 119–239

    Google Scholar 

  • Islam MM, Hoque MA, Okuma E, Banu MNA, Shimoishi Y, Nakamura Y et al (2009a) Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol 166:1587–1597

    CAS  Google Scholar 

  • Islam MM, Hoque MA, Okuma E, Jannat R, Banu MNA, Jahan S et al (2009b) Proline and glycinebetaine confer cadmium tolerance on tobacco bright yellow-2 cells by increasing ascorbate-glutathione cycle enzyme activities. Biosci Biotechnol Biochem 73:2320–2323

    CAS  Google Scholar 

  • Jalil A, Selles F, Clarke JM (1994) Effect of cadmium on growth and the uptake of cadmium and other elements by durum wheat. J Plant Nutr 17:1839–1858

    CAS  Google Scholar 

  • Januskaitiene I (2010) Impact of low concentration of cadmium on photosynthesis and growth of pea and barley. Environ Res Eng Manage 3:24–29

    Google Scholar 

  • Januškaitiene I, Juknys R, Pipiraitė A (2008) Spring barley photosynthetic rate and changes in stress phases under different cadmium impact. Agriculture 95:73–85

    Google Scholar 

  • Jemal F, Zarrouk M, Ghorbal MH (2000) Effect of cadmium on lipid composition of pepper. Biochem Soc Trans 28:907–910

    CAS  Google Scholar 

  • Jhanji S, Setia RC, Kaur N, Kaur P, Setia N (2012) Role of nitric oxide in cadmium-induced stress on growth, photosynthetic components and yield of Brassica napus L. J Environ Biol 33:1027–1032

    CAS  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2009) Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int J Plant Prod 3:65–76

    CAS  Google Scholar 

  • Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136:3276–3283

    CAS  Google Scholar 

  • Joner E, Leyval C (1997) Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol 135:353–360

    CAS  Google Scholar 

  • Kahle H (1993) Response of roots of trees to heavy metals. Environ Exp Bot 33:99–119

    Google Scholar 

  • Kalavrouziotis IK, Koukoulakis PH, Papadopoulos AH (2009a) Heavy metal interrelationships in soil in the presence of treated waste water. Global NEST J 11:497–509

    Google Scholar 

  • Kalavrouziotis IK, Koukoulakis PH, Sakellarkou-Makrantonaki M, Papanikolaou C (2009b) Effect of treated municipal wastewater on the essentaia nutrient interactions in the plant of Brassica oleracea var. Italica. Desalination 242:297–312

    CAS  Google Scholar 

  • Kambhampati MS, Begonia GB, Begonia MFT, Bufford V (2005) Morphological and physiological responses of morning glory (Ipomoea lacunosa L.) grown in a lead- and chelateamended soil. Int J Environ Res Public Health 2:299–303

    CAS  Google Scholar 

  • Kannangara CG (1991) The photosynthetic apparatus. In: Bogorad L, Vasil IK (eds) Cell culture and somatic cell genetics of plants. Academic Press, San Diego, pp 301–329

    Google Scholar 

  • Kastori R, Petrovic M, Petrovic N (1992) Effect of excess lead, cadmium, copper, and zinc on water relations in sunflower. J Plant Nutr 15:2427–2429

    CAS  Google Scholar 

  • Kavi Kishor PB, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    Google Scholar 

  • Khan MH, Patra HK (2007) Sodium chloride and cadmium induced oxidative stress and antioxidant response in Calamus tenuis leaves. Ind J Plant Physiol 12:34–40

    CAS  Google Scholar 

  • Khan MJ, Jan MT, Mohammad D (2011a) Heavy metal content of alfalfa irrigated with waste and tubewell water. Soil Environ 30:104–109

    CAS  Google Scholar 

  • Khan ZI, Ashraf M, Ahmad K, Akram NA (2011b) A study on the transfer of cadmium from soil to pasture under semi-arid conditions in Sargodha, Pakistan. Biol Trace Element Res 142:143–147

    CAS  Google Scholar 

  • Khan ZI, Mukhtar MK, Raza N, Ashraf M, Ahmad K, Akram NA (2011c) A study on the transfer of iron in soil-plant-animal continuum under semi-arid environmental conditions in Sargodha Pakistan. Biol Trace Elements Res 142:890–895

    CAS  Google Scholar 

  • Kholodova V, Volkov K, Abdeyeva A, Kuznetsov V (2011) Water status in Mesembryanthemum crystallinum under heavy metal stress. Environ Exp Bot 71:382–389

    CAS  Google Scholar 

  • Kil SI, Shin SW, Yeo HS, Lee YS, Park JW (2006) Mitochondril NADP-dependent isocitarte dehydrogenase protects cadmium-induced apoptosis. Mol Pharmacol 70:1053–1061

    CAS  Google Scholar 

  • Kirkham MB (1978) Water relations of cadmium-treated plants. J Environ Qual 7:334–336

    CAS  Google Scholar 

  • Kokkali V, Katramados I, Newman JD (2011) Monitoring the effect of metal ions on the mobility of Artemia salina Nauplii. Biosensors 1:36–45

    CAS  Google Scholar 

  • Koppen G, Verschaeve L (1996) The alkaline comet test on plant cells: a new genotoxicity test for DNA strand breaks in Vicia faba root cells. Mutat Res 360:193–200

    CAS  Google Scholar 

  • Kovacs E, Keresztes A (2002) Effect of gamma and UV-B/C radiation on plant cell. Micron 33:199–210

    CAS  Google Scholar 

  • Kramer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    CAS  Google Scholar 

  • Krezel A, Maret W (2008) Thionein/metallothionein control Zn(II) availability and the activity of enzymes. J Biol Inorg Chem 13:401–409

    CAS  Google Scholar 

  • Krupa Z (1999) Cadmium against higher plant photosynthesis – a variety of effects and where do they possibly come from? Zeitschrift für Naturforschung 54:723–729

    CAS  Google Scholar 

  • Krupa Z, Baszynski T (1989) Acyl lipid composition of thylakoid membranes of cadmium treated tomato plants. Acta Physiol Plant 11:111–116

    CAS  Google Scholar 

  • Kruzmane D, Jankevica L, Ievinsh G (2002) Effect of regurgitant from Leptinotarsa decemlineata on wound responses in Solanum tuberosum and Phaseolus vulgaris. Physiol Plant 115:577–584

    CAS  Google Scholar 

  • Kumar R, Pant N, Srivasta SP (2000) Chlorinated pesticides and heavy metals in human semen. Int J Androl 23:145–149

    Google Scholar 

  • Larsson EH, Bornman JF, Asp H (1998) Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J Exp Bot 49:1031–1039

    CAS  Google Scholar 

  • Laurent J, Pierra M, Casellas M, Dagot C (2009) The fate of heavy metals during thermal and ultrasound treatment of activated sludge. Environ Prot Eng 35:5–15

    CAS  Google Scholar 

  • Leita L, Contin M, Maggioni A (1991) Distribution of cadmium and induced Cd-binding proteins in roots, stems and leaves of Phaseolus vulgaris. Plant Sci 77:139–147

    CAS  Google Scholar 

  • Lidia A, Magdalena ZM, Zenovia O, Irina B (2011) Observations on the foliar assimilating pigments content for wild and garden roses. J Plant Dev 18:47–54

    Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    CAS  Google Scholar 

  • Lin R, Wang X, Luo Y, Du W, Guo H, Yin D (2007) Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Chemosphere 69:89–98

    CAS  Google Scholar 

  • Lin YP, Cheng BY, Chu HJ, Chang TK, Yu HL (2011) Assessing how heavy metal pollution and human activity are related by using logistic regression and kriging methods. Geoderma 163:275–282

    CAS  Google Scholar 

  • Liu DH, Wang M, Zou JH, Jiang WJ (2006) Uptake and accumulation of cadmium and some nutrient ions by roots and shoots of maize (Zea mays L.). Pak J Bot 38:701–709

    Google Scholar 

  • Liu Y, Chen G, Zhang J, Shi X, Wang R (2011) Uptake of cadmium from hydroponic solutions by willows (Salix spp.) seedlings. Afr J Biotechnol 10:16209–16218

    CAS  Google Scholar 

  • Lockwood MP (1976) Effects of pollutants on aquatic organisms. Cambridge University Press, New York

    Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11–20

    CAS  Google Scholar 

  • Lozano-Rodriguez E, Hernandez LE, Bonay P, Carpena-Ruiz RO (1997) Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. J Exp Bot 306:123–128

    Google Scholar 

  • Luan ZQ, Cao HC, Yan BX (2008) Individual and combined phytotoxic effects of cadmium, lead and arsenic on soybean in Phaeozem. Plant Soil Environ 54:403–411

    CAS  Google Scholar 

  • Lue-Kim H, Rauser WE (1986) Partial characterization of cadmium-binding protein from roots of tomato. Plant Physiol 81:896–900

    CAS  Google Scholar 

  • Luo LX, Sun TH, Jin YH (1998) Accumulation of superoxide radical in wheat leaves under cadmium stress. Acta Sci Circumtant 18:495–499

    CAS  Google Scholar 

  • Luo Y, Li WM, Wang W (2008) Trehalose: protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? Environ Exp Bot 63:378–384

    CAS  Google Scholar 

  • Ma QQ, Wang W, Li YH, Li DQ, Zou Q (2006) Alleviation of photoinhibition in drought stressed wheat (Triticum aestivum) by foliar applied glycinebetaine. J Plant Physiol 163:165–175

    CAS  Google Scholar 

  • Mahmud SA, Nagahisa K, Hirasawa T, Yoshikawa K, Ashitani K, Shimizu H (2009) Effect of trehalose accumulation on response to saline stress in Sacccharomyces cerevisiae. Yeast 26:17–30

    CAS  Google Scholar 

  • Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29:177–187

    CAS  Google Scholar 

  • Maksymiec W, Wianowska D, Dawidowicz AL, Radkiewicz S, Mardarowicz M, Krupa Z (2005) The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J Plant Physiol 162:1338–1346

    CAS  Google Scholar 

  • Malan HL, Farrant JM (1998) Effects of the metal pollutants cadmium and nickel on soybean seed development. Seed Sci Res 8:445–453

    CAS  Google Scholar 

  • Malkowski E, Kita A, Galas W, Karcz W, Kuperberg M (2002) Lead distribution in corn seedling (Zea mays L.) and its effect on growth and the concentrations of potassium and calcium. Plant Soil 37:69–76

    CAS  Google Scholar 

  • Manara A (2012) Plant responses to heavy metal toxicity. In: Furini A (ed) Plants and heavy metals, Springer briefs in biometals. Springer, New York, pp 27–53

    Google Scholar 

  • Mandhania S, Madan S, Sawhney V (2006) Antioxidant defense mechanism under salt stress in wheat seedlings. Biol Plant 227:227–231

    Google Scholar 

  • McCauley A (2009) Soil pH and organic matter. Nutr Manage Module 8:1–12

    Google Scholar 

  • Meng H, Hua S, Shamsi IH, Jilani G, Li Y, Jiang L (2009) Cadmium-induced stress on the seed germination and seedling growth of Brassica napus L., and its alleviation through exogenous plant growth regulators. Plant Growth Regul 58:47–59

    CAS  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    CAS  Google Scholar 

  • Mishra S, Dubey RS (2005) Heavy metal toxicity induced alterations in photosynthetic metabolism in plants. In: Pessarakli M (ed) Photosynthesis, 2nd edn. CRC Press/Taylor and Francis Group, New York, pp 845–863

    Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25–37

    CAS  Google Scholar 

  • Mohamed AA, Castagna A, Ranieri A, Sanità di Toppi L (2012) Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiol Biochem 12:15–22

    Google Scholar 

  • Mohan BS, Hosetti BB (2006) Phytotoxicity of cadmium on the physiological dynamics of Salvinia natans L. grown in macrophyte ponds. J Environ Biol 27:701–704

    CAS  Google Scholar 

  • Molins H, Michelet L, Lanquar V, Agorio A, Giraudat J, Roach T, Krieger-Liszkay A, Thomine S (2013) Mutants impaired in vacuolar metal mobilization identify chloroplasts as a target for cadmium hypersensitivity in Arabidopsis thaliana. Plant Cell Environ 36:804–817

    CAS  Google Scholar 

  • Morrow H (1996) The environmental and engineering advantages of cadmium coatings. Sources of Cadmium in the Environment, Inter-Organisation Programme for the Sound Management of Chemicals (IOMC), Organisation for Economic Co-Operation and Development (OECD), Paris

    Google Scholar 

  • Morrow H, Keating J (1997) Overview paper for OECD workshop on the effective collection and recycling of nickel-cadmium batteries. OECD workshop on the effective collection and recycling of nickel-cadmium batteries, Lyon. Proceedings to be published by OECD, Paris

    Google Scholar 

  • Mouron SA, Golijow CD, Dulout FN (2001) DNA damage by cadmium and arsenic salts assessed by the single cell gel electrophoresis assay. Mutation Res 498:47–55

    CAS  Google Scholar 

  • Moya JL, Ros R, Picazo I (1993) Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants. Photosynth Res 36:75–80

    CAS  Google Scholar 

  • Moya JL, Ros R, Picazo I (1995) Heavy metal hormone interactions in rice plants: effects on growth, net photosynthesis, and carbohydrate distribution. J Plant Growth Regul 14:61–67

    CAS  Google Scholar 

  • Mrozik A, Piotrowska-Seget Z, ŁabuŻek S (2004) Cytoplasmatic bacterial membrane responses to environmental perturbations. Pol J Environ Stud 13:487–494

    Google Scholar 

  • Müller-Moulé P, Golan T, Niyogi KK (2004) Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress. Plant Physiol 134:1163–1172

    Google Scholar 

  • Nagoor S (1999) Physiological and biochemical responses of cereal seedlings to graded levels of heavy metals. II. Effects on protein metabolism in maize seedlings. Adv Plant Sci 12:425–433

    Google Scholar 

  • Ne O, Igwe JC, Onwuchekwa EC (2005) Risk and health implications of polluted soils for crop production. Afr J Biotechnol 4:1521–1524

    Google Scholar 

  • Nikolić N, Kojić D, Pilipović A, Pajević S, Krstić B, Borišev B, Orlović S (2008) Responses of hybrid poplar to cadmium stress: photosynthetic characteristics, cadmium and proline accumulation, and antioxidant enzyme activity. Acta Biol Cracov Ser Bot 50:95–103

    Google Scholar 

  • Nordberg M, Nordberg GF (2009) Metallothioneins: historical development and overview. Met Ions Life Sci 5:1–29

    CAS  Google Scholar 

  • Noreen Z, Ashraf M, Akram NA (2010) Salt-induced regulation of some key physio-biochemical phenomena in five diverse cultivars of turnip (Brassica rapa L.). J Agron Crop Sci 196:273–285

    CAS  Google Scholar 

  • Nriagu JO (1980) Production uses and properties of cadmium. In: Nriagu JO (ed) Cadmium in the environment, Part 1 ecological cycling. Wiley, Toronto

    Google Scholar 

  • OECD (1994) Organisation for Economic Co-operation and Development (OECD), Risk reduction monograph no. 5: cadmium. OECD Environment Directorate, Paris

    Google Scholar 

  • Olubunmi FE, Olorunsola OE (2010) Evaluation of the status of heavy metal pollution of sediment of Agbabu bitumen deposit area, Nigeria. Eur J Sci Res 41:373–382

    Google Scholar 

  • Ouzounidou G, Moustakas M, Eleftheriou EP (1997) Physiological and ultrastructural effects of cadmium on wheat (Triticum aestivum L.) leaves. Arch Environ Contam Toxicol 32:154–160

    CAS  Google Scholar 

  • Padmaja K, Prasad DDK, Prasad ARK (1990) Inhibition of chlorophyll synthesis in Phaseolus vulgaris seedlings by cadmium acetate. Photosynthetica 24:399–405

    CAS  Google Scholar 

  • Page V, Feller U (2005) Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants. Ann Bot 96:425–434

    CAS  Google Scholar 

  • Pal M, Horvath E, Janda T, Paldi E, Szalai G (2006) Physiological changes and defence mechanisms induce by cadmium stress in maize. J Plant Nutr Soil Sci 169:239–246

    CAS  Google Scholar 

  • Palacios Ò, Atrian S, Capdevila M (2011) Zn- and Cu-thioneins: a functional classification for metallothioneins? J Biol Inorg Chem 16:991–1009

    CAS  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    CAS  Google Scholar 

  • Pell EJ, Schlagnhaufer CD, Arteca RN (1997) Ozone-induced oxidative stress: mechanisms of action and reaction. Physiol Plant 100:264–273

    CAS  Google Scholar 

  • Pena LB, Pasquini LA, Tomaro ML, Gallego SM (2006) Proteolytic system in sunflower (Helianthus annuus L.) leaves under cadmium stress. Plant Sci 171:531–537

    CAS  Google Scholar 

  • Peralta JR, Gardea-Torresdey L, Tiemann KJ, Gomez S, Arteaga E, Rascon J, Parsons G (2000) Study of the effects of heavy metals on seed germination and plant growth on alfalfa plant (Medicago sativa) grown in solid media. Environ Sci Eng 15:135–140

    Google Scholar 

  • Perez-Arellano I, Carmona-Alvarez F, Martinez AI, Rodriguez-Diaz J, Cervera J (2010) Pyrroline-5-carboxylate synthase and proline biosynthesis: from osmotolerance to rare metabolic disease. Protein Sci 19:372–382

    CAS  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    CAS  Google Scholar 

  • Perveen S, Shahbaz M, Ashraf M (2010) Regulation in gas exchange and quantum yield of photosystem II (PSII) in salt-stressed and non-stressed wheat plants raised from seed treated with triacontanol. Pak J Bot 42:3073–3081

    CAS  Google Scholar 

  • Perveen S, Shahbaz M, Ashraf M (2011) Modulation in activities of antioxidant enzymes in salt stressed and non-stressed wheat (Triticum aestivum L.) plants raised from seed treated with triacontanol. Pak J Bot 43:2463–2468

    CAS  Google Scholar 

  • Perveen S, Shahbaz M, Ashraf M (2012) Is pre-sowing seed treatment with triacontanol effective in improving some physiological and biochemical attributes of wheat (Triticum aestivum L.) under salt stress? J Appl Bot Food Qual 85:41–48

    Google Scholar 

  • Piotrowska-Seget Z, Mrozik A (2003) Signature lipid biomarker (SLB) analysis in determining changes in community structure of soil microorganisms. Pol J Environ Stud 12:669–675

    CAS  Google Scholar 

  • Polle A, Rennenberg H (1994) Photooxidative stress in trees. In: Foyer CH, Mullineauv PM (eds) Causes of photoxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 199–218

    Google Scholar 

  • Pope CA, Burnett RT, Krewski D, Jerrett M, Shi Y, Calle EE et al (2009) Cardiovascular mortality and exposure to airborne fine particulate matter and cigarette smoke: shape of the exposure-response relationship. Circulation 120:941–948

    CAS  Google Scholar 

  • Poschenreider CR, Gunse B, Barcelo L (1989) Influence of cadmium on water relations, stomatal resistance and abscisic acid content in expanding bean leaves. Plant Physiol 90:1365–1371

    Google Scholar 

  • Prelota B, Janusz W, Thomas F, Villieras F, Charmas R, Piasecki W, Rudzinski W (2002) Adsorption of cadmium ions at the electrolyte/silica interface I. Experimental study of surface properties. Appl Surf Sci 196:322–330

    Google Scholar 

  • Przedpełska-Wąsowicz E, Polatajko A, Wierzbicka M (2012) The influence of cadmium stress on the content of mineral nutrients and metal-binding proteins in Arabidopsis halleri. Water Air Soil Pollut 223:5445–5458

    Google Scholar 

  • Pulido MP, Parrish AR (2003) Metal induced apoptosis: mechanisms. Mutation Res 533:227–241

    CAS  Google Scholar 

  • Rady MM (2011) Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci Hort 129:232–237

    CAS  Google Scholar 

  • Ralph PJ, Burchett MD (1998) Photosynthetic response of Halophila ovalis to heavy metal stress. Environ Pollut 103:91–101

    CAS  Google Scholar 

  • RAO MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635

    CAS  Google Scholar 

  • Rascio N, Vecchia FD, Ferretti M, Merlo L, Ghisi R (1993) Some effects of cadmium on maize plants. Arch Environ Contam Toxicol 25:244–249

    CAS  Google Scholar 

  • Rauser WE, Muwly P (1995) Retention of cadmium in roots of maize seedlings. Role of complexation by phytochelatins and related thiol peptides. Plant Physiol 109:195–202

    CAS  Google Scholar 

  • Reddy GN, Prasad MNV (1993) Tyrosine is not phosphorylated in cadmium induced hsp70 cognate in maize (Zea mays L.) seedlings: role in chaperone function. Biochem Arch 9:25–32

    Google Scholar 

  • Root RA, Miller RJ, Koeppe DE (1975) Uptake of cadmium its toxicity, and effect on the iron ratio in hydroponocally grown corn. J Environ Qual 4:473–476

    CAS  Google Scholar 

  • Rotkittikhun R, Kruatrachue M, Chaiyarat R, Ngernsansaruay C, Pokethitiyook P, Paijitprapaporn A, Baker AJM (2006) Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand. Environ Pollut 144:681–688

    CAS  Google Scholar 

  • Saleem A, Ashraf M, Akram NA (2011) Salt (NaCl)-induced modulation in some key physio-biochemical attributes in okra (Abelmoschus esculentus L.). J Agron Crop Sci 197:202–213

    CAS  Google Scholar 

  • Saleem A, Ashraf M, Akram NA, Al-Qurainy F (2012) Salinity-induced changes in the composition of some key enzymatic and non-enzymatic antioxidants, osmoprotectants, chlorophyll pigments and some inorganic elements in okra (Abelmoschus esculentus L.) fruit. J Hort Sci Biotechnol 87:271–277

    CAS  Google Scholar 

  • Salin ML (1988) Toxic oxygen species and protective systems of the chloroplast. Physiol Plant 72:681–689

    CAS  Google Scholar 

  • Saniewski M, Ueda J, Miyamoto K, Urbanek H (2003) Interaction between ethylene and other plant hormones in regulation of plant growth and development in natural conditions and under abiotic and biotic stresses. In: Vendrell M, Klee H, Pech JC, Romojaro F (eds) Biology and biotechnology of the plant hormone ethylene III. IOS Press, Washington, DC, pp 263–270

    Google Scholar 

  • Sarangthem J, Jain M, Gadre R (2011) Inhibition of δ-aminolevulinic acid dehydratase activity by cadmium in excised etiolated maize leaf segments during greening. Plant Soil Environ 57:332–337

    CAS  Google Scholar 

  • Sarwar N, Saifullah SSM, Munir HZ, Asif N, Sadia B, Ghulam F (2010) Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric 90:925–937

    CAS  Google Scholar 

  • Sasa T, Sugahara K (1976) Photoconversion of protochlorophyll to chlorophyll a in a mutant of Chlorella regularis. Plant Cell Physiol 17:273–279

    CAS  Google Scholar 

  • Schat H, Sharma SS, Vooijs R (1997) Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiol Plant 101:477–482

    CAS  Google Scholar 

  • Schlegel H, Godbold DL, Hüttermann A (1987) Whole plant aspects of heavy metal induced changes in CO2 uptake and water relation of spruce (Picea abies) seedlings. Physiol Plant 69:265–270

    CAS  Google Scholar 

  • Setia RC, Bala R, Setia N, Anuradha G (1993) Photosynthetic characteristics of heavy metal treated wheat plant (Triticum aestivum L.). Plant Sci Res 9:47–49

    CAS  Google Scholar 

  • Seuntjens R, Mallants D, Simunek J, Patyn J, Jacques D (2002) Sensitivity analysis of physical and chemical properties affecting field-scale cadmium transport in a heterogeneous soil profile. J Hydrol 264:185–200

    CAS  Google Scholar 

  • Seyyedi M, Timko MP, Sundqvist C (1999) Protochlorophyllide, NADPH-protochlorophyllide oxidoreductase, and chlorophyll formation in the lip1 mutant of pea. Physiol Plant 106:344–354

    CAS  Google Scholar 

  • Shah K, Dubey RS (1997) Effect of cadmium on proline accumulation and ribonuclease activity in rice seedlings. Role of proline as a possible enzyme protectant. Biol Plant 40:121–130

    CAS  Google Scholar 

  • Shah K, Dubey RS (1998) A 18 kDa cadmium inducible protein complex from rice: its purification and characterization from rice (Oryza sativa L.) roots tissues. J Plant Physiol 152:448–454

    CAS  Google Scholar 

  • Shah S, Tugendreich S, Forbes D (1998) Major binding sites for the nuclear import receptor are the integral nucleoporin Nup153 and the adjacent nuclear filament protein Tpr. J Cell Biol 141:31–49

    CAS  Google Scholar 

  • Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32:237–249

    Google Scholar 

  • Shahbaz M, Ashraf M, Athar HR (2008) Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.). Plant Growth Regul 55:51–64

    CAS  Google Scholar 

  • Shahbaz M, Ashraf M, Al-Qurainy F, Harris PJC (2012) Salt tolerance in selected vegetable crops. Crit Rev Plant Sci 31:303–320

    CAS  Google Scholar 

  • Shamsi IH, Wei K, Jilani G, Zhang G (2007) Interactions of cadmium and aluminum toxicity in their effect on growth and physiological parameters in soybean. J Zhejiang Univ Sci B 8:181–188

    CAS  Google Scholar 

  • Shan S, Liu F, Li CC, Wan S (2012) Effects of cadmium on growth, oxidative stress and antioxidant enzyme activities in peanut (Arachis hypogaea L.) seedlings. J Agric Sci 4:142–151

    Google Scholar 

  • Sharif AS, Suzelle FB (2006) Effect of soil fertility and transpiration rate on young wheat plants (Triticum aestivum) Cd/Zn uptake and yield. Agric Water Manage 82:177–192

    Google Scholar 

  • Sharma I, Pati PK, Bherdwaj N (2010) Regulation of growth and antioxidant enzyme activities by 28-homobrassinolide in seedlings of Raphanus sativus L. under cadmium stress. Indian J Biochem Biophys 47:172–177

    CAS  Google Scholar 

  • Simidjiev I, Stoylova S, Amenitsch H, Jávorfi T, Mustárdy L, Laggner P, Holzenburg A, Garab G (2000) Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. Proc Natl Acad Sci 97:1473–1476

    CAS  Google Scholar 

  • Singh PK, Tewari RK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24:107–112

    CAS  Google Scholar 

  • Singh S, Eapen S, Souza SFD (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere 62:233–246

    CAS  Google Scholar 

  • Skorzynska E, Baszynski T (1995) Photochemical activities of primary leaves in cadmium stressed Phaseolus coccineus depends on their growth stages. Acta Soc Bot Pol 64:273–279

    Google Scholar 

  • Skórzyńska-Polit E, Krupa Z (2006) Lipid peroxidation in cadmium-treated Phaseolus coccineus plants. Arch Environ Toxicol 50:482–487

    Google Scholar 

  • Skorzynska E, Bednara J, Baszynski T (1995) Some aspects of runner bean plant response to cadmium at different stages of the primary leaf growth. Acta Soc Bot Pol 64:165–170

    Google Scholar 

  • Skorzynska-Polit E, Baszynski T (1997) Differences in sensitivity of photosynthetic apparatus in Cd-stressed runners bean plants in relation to their age. Plant Sci 128:11–21

    CAS  Google Scholar 

  • Skrebsky ET, Tabaldi LA, Pereira LB, Rauber R, Maldaner J, Cargnelutti D, Gonçalves JF, Castro GY, Shetinger MRC, Nicoloso FT (2008) Effect of cadmium on growth, micronutrient concentration, and d-aminolevulinic acid dehydratase and acid phosphatase activities in plant of Pfaffia glomerata. Braz J Plant Physiol 20:285–294

    Google Scholar 

  • Smeets K, Cypers A, Lamrechts A, Semane B, Hoet P, Laere AV, Vangronsveld J (2005) Induction of oxidative stress and antioxidative mechanism in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43:437–444

    CAS  Google Scholar 

  • Solis-Dominguez FA, Gonzalez-Chavez MC, Carrillo-Gonzalez R, Rodriguez-Vazquez R (2007) Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system. J Hazard Mater 141:630–636

    CAS  Google Scholar 

  • Sottnikova A, Lunackova L, Masarovicova E, Lux A, Stresko V (2003) Changes in the rooting and growth of willows and poplars induced by cadmium. Biol Plant 46:129–134

    CAS  Google Scholar 

  • Spurgeon DJ, Hopkin SP, Jones DT (1994) Effects of cadmium, copper, lead and zinc on growth, reproduction and survival of the earthworm Eisenia fetida (Savigny): assessing the environmental impact of point source metal contamination in terrestrial ecosystems. Environ Pollut 84:123–130

    CAS  Google Scholar 

  • Srivastava P, Pandey A, Sinha DP (2011) Genetic diversity analysis in different varieties of black gram using RAPD markers. J Plant Breed Crop Sci 3:53–59

    CAS  Google Scholar 

  • Staswick PE (1994) Storage proteins of vegetative plant tissues. Annu Rev Plant Physiol Plant Mol Biol 45:303–322

    CAS  Google Scholar 

  • Stiborová M, Doubravová M, Leblová S (1986) A comparative study of the effect of heavy metal ions on ribulose-1,5-bisphosphate carboxylase and phosphoenolpyruvate carboxylase. Biochem Physiol Pflanz 181:373–379

    Google Scholar 

  • Stimpson HE, Lewis MJ, Pelham HR (2006) Transferrin receptor-like proteins control the degradation of a yeast metal transporter. EMBO J 25:662–672

    CAS  Google Scholar 

  • Stobart AK, Griths WT, Ameen-Bukhari I, Sherwood RP (1985) The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Plant Physiol 63:293–298

    CAS  Google Scholar 

  • Stohs SJ, Bagchi D, Hassoun E, Bagchi M (2000) Oxidative mechanisms in the toxicity of chromium and cadmium ions. J Environ Pathol Toxicol Oncol 19:201–213

    CAS  Google Scholar 

  • Stroinski A (1999) Some physiological and biochemical aspects of plant resistance to cadmium effect. I. antioxidative system. Acta Physiol Plant 21:175–188

    CAS  Google Scholar 

  • Sunda WG, Huntsman SA (1998) Interactions among Cu2+, Zn2+, and Mn2+ in controlling cellular Mn, Zn, and growth rate in the coastal alga Chlamydomonas. Limnol Oceanogr 43:1055–1064

    CAS  Google Scholar 

  • Sutapa B, Bhattacharyya AK (2008) Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere 70:1264–1272

    Google Scholar 

  • Talanova VV, Titov AF, Boeva NP (2000) Effect of increasing concentrations of lead and cadmium on cucumber seedlings. Biol Plant 43:441–444

    CAS  Google Scholar 

  • Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346

    CAS  Google Scholar 

  • Tanaka R, Kobayashi K, Masuda T (2011) Tetrapyrrole metabolism in Arabidopsis thaliana. Arabidopsis Book 9:e0145

    Google Scholar 

  • Tantrey MS, Agnihotri RK (2010) Chlorophyll and proline content of gram (Cicer arietinum L.) under cadmium and mercury treatments. Res J Agric Sci 1:119–122

    Google Scholar 

  • Theriappan P, Gupta A, Dhasarathan P (2011) Accumulation of proline under salinity and heavy metal stress in cauliflower seedlings. J Appl Sci Environ Manage 15:251–255

    CAS  Google Scholar 

  • Tiryakioglu M, Eker S, Ozkutlu F, Husted S, Cakmak I (2006) Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. J Trace Elem Med Biol 20:181–189

    CAS  Google Scholar 

  • Tiwari SB, Wang XJ, Hagen G, Guilfoyle TJ (2001) AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 13:2809–2822

    CAS  Google Scholar 

  • Toneva TV, Dimitrova SD, Pavlova BI, Minkov IN (2002) Influence of nitropyrine on the early stages of chlorophyll synthesis in wheat. Bulg J Plant Physiol 28:92–98

    CAS  Google Scholar 

  • Toppi SL, Gabrielli R (1999) Responses to cadmium in higher plants. Environ Exp Bot 41:105–130

    Google Scholar 

  • Trakal L, Komárek M, Száková J, Tlustoš P, Tejnecký V, Drábek O (2012) Sorption behavior of Cd, Cu, Pb, and Zn and their interactions in phytoremediated soil. Int J Phytoremed 14:806–819

    CAS  Google Scholar 

  • Tyler G, Pahlsson AM, Bengtsson G, Baath E, Tranvik L (1989) Heavy metal ecology and terrestrial plants, microorganisms and invertebrates: a review. Water Air Soil Pollut 47:189–215

    CAS  Google Scholar 

  • Ueki S, Citovsky V (2005) Control improves with age: systemic transport in plant embryos and adults. Proc Natl Acad Sci USA 102:1817–1818

    CAS  Google Scholar 

  • Unyayar S, Değer AG, Celik A, Cekic FO, Cevik S (2010) Cadmium-induced antioxidant status and sister-chromatid exchanges in Vicia faba L. Turk J Biol 34:413–422

    CAS  Google Scholar 

  • van Assche FJ (1998) A stepwise model to quantify the relative contribution of different environmental sources to human cadmium exposure. Paper was presented at NiCad ‘98, Prague, 21–22 Sept 1998

    Google Scholar 

  • Vassilev A, Iordanov I, Chakalova E, Kerin V (1995) Effect of cadmium stress on growth and photosynthesis of young barley (H. vulgare L.) plants. 2. Structural and functional changes in the photosynthetic apparatus. Bulg J Plant Physiol 21:12–21

    CAS  Google Scholar 

  • Vassilev A, Berova M, Zlatev Z (1998) Influence of Cd2+ on growth, chlorophyll content and water relations in young barley plants. Biol Plant 41:601–606

    CAS  Google Scholar 

  • Vijayaragavan M, Prabhahar C, Sureshkumar J, Natarajan A, Vijayarengan P, Sharavanan S (2011) Toxic effect of cadmium on seed germination, growth and biochemical contents of cowpea (Vigna unguiculata L.) plants. Int Multidiscip Res J 1:1–6

    Google Scholar 

  • Vitoria AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry 57:701–710

    CAS  Google Scholar 

  • Vogeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Implication of a transport function for cadmium-binding peptides. Plant Physiol 92:1086–1093

    CAS  Google Scholar 

  • Vrettos JS, Stone DA, Brudvig GW (2001) Quantifying the ion selectivity of the Ca2+ site in photosystem II: evidence for direct involvement of Ca2+ in O2 formation. Biochemistry 40:7937–7945

    CAS  Google Scholar 

  • Walker WM, Miller JE, Hassett JJ (1977) Effect of lead and cadmium upon calcium magnesium, potassium and phosphorus, concentration in young corn plants. Soil Sci 124:145–151

    CAS  Google Scholar 

  • Wang YJ, Hao YJ, Zhang ZG, Chen T, Zhang JS, Chen SY (2005) Isolation of trehalose-6-phosphate phosphatase gene from tobacco and its functional analysis in yeast cells. J Plant Physiol 162:215–223

    CAS  Google Scholar 

  • Wei L, Donat JR, Fones G, Ahner BA (2003) Interactions between Cd, Cu, and Zn influence particulate phytochelatin concentrations in marine phytoplankton: laboratory results and preliminary field data. Environ Sci Technol 37:3609–3618

    CAS  Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700

    CAS  Google Scholar 

  • Weltje L (1998) Mixture toxicity and tissue interactions of Cd, Cu, Pb and Zn in earthworms (Oligochaeta) in laboratory and field soils: a critical evaluation of data. Chemosphere 36:2643–2660

    CAS  Google Scholar 

  • Wojcik M, Vangronsveld J, Tukiendorf A (2005) Cadmium tolerance in Thlaspi caerulescens I. Growth parameters, metal accumulation and phytochelatin synthesis in response to cadmium. Environ Exp Bot 53:151–161

    CAS  Google Scholar 

  • Woolhouse HW (1974) Longevity and senescence in plants. Sei Prog 61:123–147

    Google Scholar 

  • Wu JT, Chang SJ, Chou TL (1995) Intracellular proline accumulation in some algae exposed to copper and cadmium. Bot Bull Acad Sin 36:89–93

    CAS  Google Scholar 

  • Xiao L (2010) Evaluation of extraction methods for recovery of fatty acids from marine products. Bjørn Grung, University of Bergen, Bergen

    Google Scholar 

  • Xiao S, Chye ML (2011) New roles for acyl-CoA-binding proteins (ACBPs) in plant development, stress responses and lipid metabolism. Prog Lipid Res 50:141–151

    CAS  Google Scholar 

  • Xu Y, Jin J, Liu T, Zhou H, Hu T, Wang Q, Long M (2011) Regulation function of nitric oxide (NO) in leaves of plant under environmental stress. Afr J Biotechnol 10:15673–15677

    CAS  Google Scholar 

  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii H.). Plant Soil 259:181–189

    CAS  Google Scholar 

  • Yasar U, Ozyigit II, Yalcin IE, Dogan I, Demir G (2012) Determination of some heavy metals and mineral nutrients of bay tree (Laurus nobilis L.) in bartin city, Turkey. Pak J Bot 44:81–89

    CAS  Google Scholar 

  • Yen JL, Su N, Kaiser P (2005) The yeast ubiquitin ligase SCFMet30 regulates heavy metal response. Mol Biol Cell 16:1872–1882

    CAS  Google Scholar 

  • Ying R, Qiu R, Tang Y, Hu P, Qiu H, Chen H, Shi T, Morel J (2010) Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyper accumulator Picris divaricata. J Plant Physiol 167:81–87

    CAS  Google Scholar 

  • Yordanova R, Maslenkova L, Paunova S, Popova L (2009) Sensitivity of photosynthetic apparatus of pea plants to heavy metal stress. Biotechnol Biotechnol Equip 23:347–350

    Google Scholar 

  • Young A, Britton G (1990) Carotenoids and stress. In: Alscher RG, Cumming JR (eds) Stress responses in plants: adaptation and acclimation mechanisms. Wiley-Liss, New York, pp 87–112

    Google Scholar 

  • Zengin FK, Munzuroglu O (2005) Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biol Cracov Ser Bot 47:157–164

    Google Scholar 

  • Zhang JB, Huang WN (2007) Effects of cadmium stress on photosynthetic functions of strawberry. Ying Yong Sheng Tai Xue Bao 18:1673–1676

    Google Scholar 

  • Zhang XY, Lin FF, Wong MTF, Feng XL, Wang K (2009) Identification of soil heavy metal sources from anthropogenic activities and pollution assessment of Fuyang County, China. Environ Monit Assess 154:439–449

    CAS  Google Scholar 

  • Zhang X, Zhang S, Xu X, Li T, Gong G, Jia Y, Li Y, Deng L (2010) Tolerance and accumulation characteristics of cadmium in Amaranthus hybridus L. J Hazard Mater 180:303–308

    CAS  Google Scholar 

  • Zhang C, Qiao Q, Appel E, Huang B (2012) Discriminating sources of anthropogenic heavy metals in urban street dusts using magnetic and chemical methods. J Geochem Exp 119–120:60–75

    Google Scholar 

  • Zhao Y (2011) Cadmium accumulation and antioxidative defenses in leaves of Triticum aestivum L. and Zea mays L. Afr J Biotechnol 10:2936–2943

    CAS  Google Scholar 

  • Zhao FY, Liu W, Zhang SY (2009) Different responses of plant growth and antioxidant system to the combination of cadmium and heat stress in transgenic and non-transgenic rice. J Integr Plant Biol 51:942–950

    CAS  Google Scholar 

  • Zhong L, Hu C, Tan Q, Liu J, Sun X (2011) Effects of sulfur application on sulfur and arsenic absorption by rapeseed in arsenic-contaminated soil. Plant Soil Environ 57:429–434

    CAS  Google Scholar 

  • Zhou QX, Zhang QR, Liang J (2006) Toxic effects of acetochlor and methamidops on earthworm Eisenia fetida in Phaeozem, Northeast China. J Environ Sci 18:741–745

    CAS  Google Scholar 

  • Zhou ZS, Song JB, Yang ZM (2012) Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium. J Exp Bot 63:4597–4613

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvaiz Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Qadir, S., Jamshieed, S., Rasool, S., Ashraf, M., Akram, N.A., Ahmad, P. (2014). Modulation of Plant Growth and Metabolism in Cadmium-Enriched Environments. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-319-03777-6_4

Download citation

Publish with us

Policies and ethics