Skip to main content

Mercury Toxicity and Neurodegenerative Effects

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 229))

Abstract

Neurodegeneration is a broadly defined term that describes the loss of neuronal structure and function, and produces disorders known as neurodegenerative diseases. A common feature of neurodegeneration is the progressive cell loss in specific neuronal populations of the central nervous system (CNS), often associated with cytoskeletal protein changes that led to intracytoplasmic and/or intranuclear inclusions in neurons and/or glia. The neurological consequences of neurodegeneration in patients are often devastating and result in severe mental and physical effects, accounting for a large number of hospitalizations and disabilities. Although the causes of the majority of neurodegenerative diseases are still unknown, it has become increasingly clear that the major basic processes that induce neurodegeneration are multifactorial ones that are caused by genetic, endogenous, and environmental factors. Protein misfolding and aggregation, oxidative stress, mitochondrial dysfunction, and phosphorylation impairment are the major shared neurodegenerative pathogenic processes (Jellinger 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberti A, Pirrone P, Elia M, Waring RH, Romano C (1999) Sulphation deficit in “low-functioning” autistic children. Biol Psychiatry 46:420–424

    CAS  Google Scholar 

  • Andersen A, Julshamn K, Ringdal O, Mørkøre J (1987) Trace elements intake in the Faroe Islands. II. Intake of mercury and other elements by consumption of pilot whales (Globicephalus meleanus). Sci Total Environ 65:63–68

    CAS  Google Scholar 

  • Aschner M, Yao CP, Allen JW, Tan KH (2000) Methylmercury alters glutamate transport in astrocytes. Neurochem Int 37:199–206

    CAS  Google Scholar 

  • Bains JS, Shaw CA (1997) Neurodegenerative disorders in humans and role of glutathione in oxidative stress mediated neuronal death. Brain Res Rev 25:335–358

    CAS  Google Scholar 

  • Bakir F, Damluji SF, Amin-Zaki L, Murtadha M, Khalidi A, Al-Rawi NY, Tikriti S, Dahahir HI, Clarkson TW, Smith JC, Doherty RA (1973) Methylmercury poisoning in Iraq. Science 181:230–241

    CAS  Google Scholar 

  • Ball LK, Ball R, Pratt RD (2001) An assessment of thimerosal use in childhood vaccines. Pediatrics 107:1147–1154

    CAS  Google Scholar 

  • Barnham KJ, Bush A (2008) Metals in Alzheimer’s and Parkinson’s diseases. Curr Opin Chem Biol 12:222–228

    CAS  Google Scholar 

  • Baum CR (1999) Treatment of mercury intoxication. Curr Opin Pediatr 11:265–268

    CAS  Google Scholar 

  • Ben-Ozer EY, Rosenspire AJ, McCabe MJ, Worth RG, Kindzelskii AL, Warra NS, Petty HR (2000) Mercury chloride damages cellular DNA by a non-apoptotic mechanism. Mutat Res 470:19–27

    CAS  Google Scholar 

  • Bento-Abreu A, Van Damme P, Van Den Bosch L, Robberecht W (2010) The neurobiology of amyotrophic lateral sclerosis. Eur J Neurosci 31:2247–2265

    Google Scholar 

  • Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanism. Arch Toxicol 82:493–512

    CAS  Google Scholar 

  • Björkman L, Lundekvam BF, Laegreid T, Bertelsen BI, Morild I, Lilleng P, Lind B, Palm B, Vahter M (2007) Mercury in human brain, blood, muscle and toenails in relation to exposure: an autopsy study. Environ Health 6:30–44

    Google Scholar 

  • Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368:387–403

    CAS  Google Scholar 

  • Branco V, Canário J, Holmgren A, Carvalho C (2011) Inhibition of the thioredoxin system in the brain and liver of zebra–seabreams exposed to waterborne methylmercury. Toxicol Appl Pharmacol 251:95–103

    CAS  Google Scholar 

  • Callaghan B, Feldman D, Gruis K, Feldman E (2011) The association of exposure to lead, mercury, and selenium and the development of amyotrophic lateral sclerosis and the epigenetic implications. Neurodegener Dis 8:1–8

    CAS  Google Scholar 

  • Cannon JR, Greenamyre JT (2011) The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol Sci 124:225–250

    CAS  Google Scholar 

  • Carvalho CM, Lu J, Zhang X, Arner ES, Holmgren A (2010) Effects of Selenite and chelating agents on mammalian thioredoxin reductase inhibited by mercury: implications for treatment of mercury poisoning. FASEB J 25:370–381

    Google Scholar 

  • Cernichiari E, Brewer R, Myers GJ, Marsh DO, Lapham LW, Cox C, Shamlaye CF, Berlin M, Davidson PW, Clarkson TW (1995) Monitoring methylmercury during pregnancy: maternal hair predicts fetal brain exposure. Neurotoxicology 16:705–710

    CAS  Google Scholar 

  • Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury–current exposures and clinical manifestations. New Engl J Med 349:1731–1737

    CAS  Google Scholar 

  • Clarkson TW, Vyas JB, Ballatori N (2007) Mechanisms of mercury disposition in the body. Am J Ind Med 50:757–764

    CAS  Google Scholar 

  • Compeau GC, Bartha R (1985) Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50:498–502

    CAS  Google Scholar 

  • Coppede F, Migliore L (2010) Evidence linking genetics, environment, and epigenetics to impaired DNA repair in Alzheimer’s disease. J Alzheimer’s Dis 20:953–966

    CAS  Google Scholar 

  • Counter SA, Buchanan LH (2004) Mercury exposure in children: a review. Toxicol Appl Pharmacol 198:209–230

    CAS  Google Scholar 

  • Deng HX, Shi Y, Furukawa Y, Zhai H, Fu R, Liu E, Gorrie GH, Khan MS, Hung WY, Bigio EH, Lukas T, Dal Canto MC, O’Halloran TV, Siddique T (2006) Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria. Proc Natl Acad Sci U S A 103:7142–7147

    CAS  Google Scholar 

  • Deth RC (2004) Truth revealed: new scientific discoveries regarding mercury in medicine and autism. Congressional Testimony before the US House of Representatives. Subcommittee on human rights and wellness. http://reform.house.gov/WHR/Hearings/EventSingle.aspx? EventID=18156 Accessed 20 Sept 2005

  • Dórea JG (2011a) Environmental contaminants as biomarkers of fish intake: a case for hair mercury concentrations. Eur J Clin Nutr 65:419–420

    Google Scholar 

  • Dórea JG (2011b) Integrating experimental (in vitro and in vivo) neurotoxicity studies of low-dose thimerosal relevant to vaccines. Neurochem Res 36:927–938

    Google Scholar 

  • Drasch G, Schupp I, Riedel G, Gunther G (1992) Einfluß von Amalgamfüllungen auf die Quecksilber-konzentration in menschlichen Organen. Dtsch Zahnärztl Z 47:490–496

    CAS  Google Scholar 

  • Drasch G, Schupp I, Hofl H, Reinke R, Roider G (1994) Mercury burden of human fetal and infant tissues. Eur J Pediatr 153:607–610

    CAS  Google Scholar 

  • Drum DA (2009) Are toxic biometals destroying your children future? Biometals 22:697–700

    CAS  Google Scholar 

  • Duhr EF, Pendergrass JC, Slevin JT, Haley BE (1993) HgEDTA complex inhibits GTP interactions with the E-site of brain beta-tubulin. Toxicol Appl Pharmacol 122:273–280

    CAS  Google Scholar 

  • Farina M, Campos F, Vendrell I, Berenguer J, Barzi M, Pons S, Suñol C (2009) Probucol increases glutathione peroxidase-1 activity and displays long-lasting protection against methylmercury toxicity in cerebellar granule cells. Toxicol Sci 112:416–426

    CAS  Google Scholar 

  • Farina M, Rocha JBT, Aschner M (2011a) Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci 89:555–563

    CAS  Google Scholar 

  • Farina M, Aschner M, Rocha JBT (2011b) Oxidative stress in MeHg-induced toxicity. Toxicol Appl Pharmacol 256:405–417

    CAS  Google Scholar 

  • Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, Myers RH, Pericak-Vance MA, Risch N, van Duijn CM (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278:1349–1356

    CAS  Google Scholar 

  • Fitsanakis VA, Aschner M (2005) The importance of glutamate, glycine, and gammaaminobutyric acid transport and regulation in manganese, mercury and lead neurotoxicity. Toxicol Appl Pharmacol 204:343–354

    CAS  Google Scholar 

  • Franco JL, Braga HC, Stringari J, Missau FC, Posser T, Mendes BG, Leal RB, Santos AR, Dafre AL, Pizzolatti MG, Farina M (2007) Mercurial-induced hydrogen peroxide generation in mouse brain mitochondria: protective effects of quercetin. Chem Res Toxicol 20:1919–1926

    CAS  Google Scholar 

  • Franco JL, Posser T, Dunkley PR, Dickson PW, Mattos JJ, Martins R, Bainy AC, Marques MR, Dafre AL, Farina M (2009) Methylmercury neurotoxicity is associated with inhibition of the antioxidant enzyme glutathione peroxidase. Free Radic Biol Med 47:449–457

    CAS  Google Scholar 

  • Goyer RA, Clarkson TW (2001) Toxic effects of metals. In: Klaassen CD (ed) Casarett and Doull’s toxicology: the basic science of poisons, 6th edn. McGraw-Hill, New York, pp 811–867

    Google Scholar 

  • Grandjean P, Herz KT (2011) Methylmercury and brain development: imprecision and underestimation of developmental neurotoxicity in humans. Mt Sinai J Med 78:107–118

    Google Scholar 

  • Guzzi G, La Porta CA (2008) Molecular mechanism triggered by mercury. Toxicology 244:1–12

    CAS  Google Scholar 

  • Guzzi G, Grandi M, Cattaneo C, Calza S, Minoia C, Ronchi A, Gatti A, Severi G (2006) Dental amalgam and mercury levels in autopsy tissues: food for thought. Am J Forensic Med Pathol 27:42–45

    Google Scholar 

  • Harper ME, Bevilacqua L, Hagopian K, Weindruch R, Ramsey JJ (2004) Ageing, oxidative stress, and mitochondrial uncoupling. Acta Physiol Scand 182:321–331

    CAS  Google Scholar 

  • International Programme on Chemical Safety IPCS (2000) International Chemical Safety Cards 0056, 0978, 0979, 0980, 0981, 0982 and 0984. World Health Organization, International Programme on Chemical Safety, Geneva

    Google Scholar 

  • Jellinger KA (2003) General aspects of neurodegeneration. J Neural Transm Suppl 65:101–144

    Google Scholar 

  • Johansson C, Castoldi AF, Onishchenko N, Manzo L, Vahter M, Ceccatelli S (2007) Neurobehavioral and molecular changes induced by methylmercury exposure during development. Neurotox Res 11:241–260

    CAS  Google Scholar 

  • Johnson FO, Atchison WD (2009) The role of environmental mercury, lead and pesticide exposure in development of amyotrophic lateral sclerosis. Neurotoxicology 30:761–765

    CAS  Google Scholar 

  • Jonasson IR, Boyle RW (1972) Geochemistry of mercury and origins of natural contamination of the environment. Can Min Metall Bull 65:32–39

    CAS  Google Scholar 

  • Kennedy GJ, Golde TE, Tariot PN, Cummings JL (2007) Amyloid based interventions in Alzheimer’s disease. CNS Spectr 12:1–14

    Google Scholar 

  • Khan MA, Asaduzzaman AM, Schreckenbach G, Wang F (2009) Synthesis, characterization and structures of methylmercury complexes with selenoamino acids. Dalton Trans 29:5766–5772

    Google Scholar 

  • Lanphear BP, Hornung R, Khoury J, Yolton K, Baghurst P, Bellinger DC, Canfield RL, Dietrich KN, Bornschein R, Greene T, Rothenberg SJ, Needleman HL, Schnaas L, Wasserman G, Graziano J, Roberts R (2005) Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ Health Perspect 11:894–899

    Google Scholar 

  • Leistevuo J, Leistevuo T, Helenius H, Pyy L, Huovinen P, Tenovuo J (2002) Mercury in saliva and the risk of exceeding limits for sewage in relation to exposure to amalgam fillings. Arch Environ Health 57:366–370

    CAS  Google Scholar 

  • Liu J, Killilea DW, Ames BN (2002) Age-associated mitochondrial oxidative decay: improvement of carnitine acetyltransferase substrate binding affinity and activity in brain by feeding old rats acetyl-L-carnitine and/or R-alpha-lipoic acid. Proc Natl Acad Sci U S A 99:1876–1881

    CAS  Google Scholar 

  • Lobanov AV, Hatfield DL, Gladyshev VN (2009) Eukaryotic selenoproteins and selenoproteomes. Biochim Biophys Acta 1790:1424–1428

    CAS  Google Scholar 

  • Lu J, Holmgren A (2009) Selenoproteins. J Biol Chem 284:723–727

    CAS  Google Scholar 

  • Magos L (2001) Review on the toxicity of ethylmercury, including its presence as a preservative in biological and pharmaceutical products. J Appl Toxicol 21:1–5

    CAS  Google Scholar 

  • Magos L, Webb M, Clarkson TW (1980) The interactions of selenium with cadmium and mercury. CRC Crit Rev Toxicol 8:1–42

    CAS  Google Scholar 

  • Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622–630

    CAS  Google Scholar 

  • Mahley RW, Weisgraber KH, Huang Y (2006) Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc Natl Acad Sci U S A 103:5644–5651

    CAS  Google Scholar 

  • Mason RP, Fitzgerald WF, Morel FMM (1994) The biogeochemical cycling of elemental mercury. Anthropogenic influences. Geochim Cosmochim Acta 58:3191–3198

    CAS  Google Scholar 

  • McCabe MJ, Lawrence DA (1994) The effects of metals of the development of the immune system. In: Schook LB, Laskin DL (eds) Xenobiotics and inflammation. Academic Press, New York, pp 193–216

    Google Scholar 

  • Morel FMM, Kraepiel AMI, Amyot M (1998) The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst 29:543–566

    Google Scholar 

  • Mount C, Downtown C (2006) Alzheimer disease: progress or profit. Nat Med 12:780–784

    CAS  Google Scholar 

  • Mutter J (2011) Is dental amalgam safe for humans? The opinion of the scientific committee of the European Commission. J Occup Med Toxicol 6:2–19

    Google Scholar 

  • Mutter J, Yeter D (2008) Kawasaki’s disease, acrodynia, and mercury. Curr Med Chem 15:3000–3010

    CAS  Google Scholar 

  • Mutter J, Naumann J, Sadaghiani C, Schneider R, Walach H (2004) Alzheimer disease: mercury as pathogenetic factor and apolipoprotein E as a moderator. Neuroendocrinol Lett 25:331–339

    CAS  Google Scholar 

  • Mutter J, Naumann J, Guethlin C (2007) Comments on the article “The toxicology of mercury and its chemical compounds” by Clarkson and Magos (2006). Crit Rev Toxicol 47:537–549

    Google Scholar 

  • Mutter J, Curth A, Naumann J, Deth R, Walach H (2010) Does inorganic mercury play a role in Alzheimer’s disease? A systematic review and a integrated molecular mechanism. J Alzheimer Dis 22:357–374

    CAS  Google Scholar 

  • Nicole A, Santiard-Baron D, Ceballos-Picot I (1998) Direct evidence for glutathione as mediator of apoptosis in neuronal cells. Biomed Pharmacother 52:349–355

    CAS  Google Scholar 

  • Nielsen JB, Andersen O (1992) The toxicokinetics of mercury in mice offspring after maternal exposure to methylmercury-effect of selenomethionine. Toxicology 74:233–241

    CAS  Google Scholar 

  • Onyido I, Norris AR, Buncel E (2004) Biomolecule–mercury interactions: modalities of DNA base-mercury binding mechanisms. Remediation strategies. Chem Rev 104:5911–5929

    CAS  Google Scholar 

  • Opitz H, Schweinsberg F, Grossmann T, Wendt-Gallitelli MF, Meyermann R (1996) Demonstration of mercury in the human brain and other organs 17 years after metallic mercury exposure. Clin Neuropath 15:139–144

    CAS  Google Scholar 

  • Pirrone N, Costa P, Pacyna JM, Ferrara R (2001) Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region. Atmos Environ 35:2997–3006

    CAS  Google Scholar 

  • Pirrone N, Cinnirella S, Feng X, Finkelman RB, Friedli HR, Leaner J (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10:5951–5964

    CAS  Google Scholar 

  • Praline J, Guennoc AM, Limousin N, Hallak H, de Toffol B, Corcia P (2007) ALS and mercury intoxication: a relationship? Clin Neurol Neurosurg 109:880–883

    Google Scholar 

  • Qiu C, De Ronchi D, Fratiglioni L (2007) The epidemiology of the dementias: an update. Curr Opin Psychiatry 20:380–385

    Google Scholar 

  • Ralston NVC, Raymond LJ (2010) Dietary selenium’s protective effects against methylmercury toxicity. Toxicology 278:112–123

    CAS  Google Scholar 

  • Ralston NVC, Ralston CR, Blackwell JL 3rd, Raymond LJ (2008) Dietary and tissue selenium in relation to methylmercury toxicity. Neurotoxicology 29:802–811

    CAS  Google Scholar 

  • Rasmussen PE (1994) Current methods of estimating atmospheric mercury fluxes in remote areas. Environ Sci Technol 28:2233–2241

    CAS  Google Scholar 

  • Rauh VA, Garfinkel R, Perera FP, Andrews HF, Hoepner L, Barr DB, Whitehead R, Tang D, Whyatt RW (2006) Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics 118:1845–1859

    Google Scholar 

  • Raymond LJ, Ralston NVC (2004) Mercury: selenium interaction and health implication. SMDJ Seychelles Medical Dent J 7:72–77

    Google Scholar 

  • Rivera-Mancia S, Pérez-Neri I, Rìos C, Tristàn-Lopez L, Rivera-Espinosa L, Montes S (2010) The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact 186:184–199

    CAS  Google Scholar 

  • Rocha JB, Freitas AJ, Marques MB, Pereira ME, Emanuelli T, Souza DO (1993) Effects of methylmercury exposure during the second stage of rapid postnatal brain growth on negative geotaxis and on delta-aminolevulinate dehydratase of suckling rats. Braz J Med Biol Res 26:1077–1083

    CAS  Google Scholar 

  • Rosen DR, Bowling AC, Patterson D, Usdin TB, Sapp P, Mezey E, McKenna-Yasek D, O’Regan J, Rahmani Z, Ferrante RJ (1994) A frequent ala 4 to val superoxide dismutase-1 mutation is associated with a rapidly progressive familial amyotrophic lateral sclerosis. Hum Mol Genet 3:981–987

    CAS  Google Scholar 

  • Satoh M, Nishimura N, Kanayama Y, Naganuma A, Suzuki T, Tohyama C (1997) Enhanced renal toxicity by inorganic mercury in metallothionein-null mice. J Pharmacol Exp Ther 283:1529–1533

    CAS  Google Scholar 

  • Schafer SG, Dawes RLF, Elsenhaus B, Forth W, Schumann K (1999) Metals. In: Marquardt H, Schafer SG, McClellan RO, Welsch F (eds) Toxicology. Academic Press, San Diego, p 782

    Google Scholar 

  • Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. AMBIO: J Human Environ 36:12–19

    CAS  Google Scholar 

  • Schiraldi M, Monestier M (2009) How can a chemical element elicit complex immunopathology? Lessons from mercury-induced autoimmunity. Trends Immunol 30:502–509

    CAS  Google Scholar 

  • Schurz F, Sabater-Vilar M, Fink-Gremmels J (2000) Mutagenicity of mercury chloride and mechanisms of cellular defence: the role of metal-binding proteins. Mutagenesis 15:525–530

    CAS  Google Scholar 

  • Schwarz S, Husstedt IW, Bertram HP, Kuchelmeister K (1996) Amyotrophic lateral sclerosis after accidental injection of mercury. J Neurol Neurosurg Psychiatry 60:698

    CAS  Google Scholar 

  • Seppanen K, Kantola M, Laatikainen R, Nyyssönen K, Valkonen VP, Kaarlöpp V, Salonen JT (2000) Effect of supplementation with organic selenium on mercury status as measured by mercury in pubic hair. J Trace Elem Med Biol 14:84–89

    CAS  Google Scholar 

  • Shigenaga M, Hagen T, Ames B (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A 91:10771–10778

    CAS  Google Scholar 

  • Silbergeld EK, Woodruff S, Gutirrez P, McKenna K, Azad A, Sacci J (1998) Effects of mercury (HG) on immune function in male and female mice (Abstr. 1012). Toxicol Sci

    Google Scholar 

  • Simmonds MP, Johnston PA, French MC, Reeve R, Hutchinson JD (1994) Organochlorines and mercury in pilot whale blubber consumed by Faroe islanders. Sci Total Environ 149:97–111

    CAS  Google Scholar 

  • Singhal RK, Anderson ME, Meister A (1987) Glutathione, a first line of defense against cadmium toxicity. FASEB J 1:220–223

    CAS  Google Scholar 

  • Sinicropi MS, Amantea D, Caruso A, Saturnino C (2010) Chemical and biological properties of toxic metals and use of chelating agents for the pharmacological treatment of metal poisoning. Arch Toxicol 84:501–520

    CAS  Google Scholar 

  • Soares FA, Farina M, Santos FW, Souza D, Rocha JB, Nogueira CW (2003) Interaction between metals and chelating agents affects glutamate binding on brain synaptic membranes. Neurochem Res 28:1859–1865

    CAS  Google Scholar 

  • Spencer JP, Jenner P, Daniel SE, Lees AJ, Marsden DC, Halliwell B (1998) Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease: possible mechanisms of formation involving reactive oxygen species. J Neurochem 71:2112–2122

    CAS  Google Scholar 

  • Stoewsand GS, Bache CA, Lisk DJ (1974) Dietary selenium protection of methylmercury intoxication of Japanese quail. Bull Environ Contam Toxicol 11:152–156

    CAS  Google Scholar 

  • Strittmatter WJ (1996) Roses Alzheimer’s disease. Apoliprotein E and Alzheimer’s disease. Annu Rev Neurosci 19:53–77

    CAS  Google Scholar 

  • Sugiura Y, Hojo Y, Tamai Y, Tanaka H (1976) Letter: selenium protection against mercury toxicity. Binding of methylmercury by the selenohydryl-containing ligand. J Am Chem Soc 98:2339–2341

    CAS  Google Scholar 

  • Sutton DJ, Tchounwou PB (2007) Mercury induces the externalization of phosphatidyl-serine in human renal proximal tubule (HK-2) cells. Int J Environ Res Public Health 4:138–144

    CAS  Google Scholar 

  • Swain EB, Jakus PM, Rice G, Lupi F, Maxson PA, Pacyna JM, Penn A, Spiegel SJ, Veiga MM (2007) Socioeconomic consequences of mercury use and pollution. Ambio 36:45–61

    Google Scholar 

  • Takser L, Mergler D, Hellier G, Sahuquillo J, Huel G (2003) Manganese, monoamine metabolite levels at birth, and child psychomotor development. Neurotoxicology 24:667–674

    CAS  Google Scholar 

  • Tan SW, Meiller JC, Mahaffey KR (2009) The endocrine effects of mercury in humans and wildlife. Crit Rev Toxicol 39(3):228–269

    CAS  Google Scholar 

  • Tanaka M, Kovalenko SA, Gong JS, Borgeld HJ, Katsumata K, Hayakawa M, Yoneda M, Ozawa T (1996) Accumulation of deletions and point mutations in mitochondrial genome in degenerative diseases. Ann N Y Acad Sci 786:102–111

    CAS  Google Scholar 

  • Tiraboschi P, Hansen LA, Thal LJ, Corey-Bloom J (2004) The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology 62:1984–1989

    CAS  Google Scholar 

  • Tsubaki T, Irukajama K (1997) Minamata disease. Methylmercury poisoning in Minamata and Niigata, Japan. In: Tsubaki T, Irukajama K (eds) Minamata disease. Methylmercury poisoning in Minamata and Niigata, Japan. Kodansha, Tokyo, pp 317. ISBN 0-444-99816-0

    Google Scholar 

  • Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    CAS  Google Scholar 

  • Vather M, Akesson A, Lind B, Bjors U, Schutz A, Berglung M (2000) Longitudinal study of methylmercury and inorganic mercury in blood and urine of pregnant and lactating women, as well as in umbilical cord blood. Environ Res 84:186–194

    Google Scholar 

  • Wagner C, Sudati JH, Nogueira CW, Rocha JB (2010) In vivo and in vitro inhibition of mice thioredoxin reductase by methylmercury. Biometals 23:1171–1177

    CAS  Google Scholar 

  • Walsh CT (1982) The influence of age on the gastrointestinal absorption of mercury chloride and methylmercury chloride in the rat. Environ Res 27:412–420

    CAS  Google Scholar 

  • Waly M, Olteanu H, Banerjee R, Choi SW, Mason JB, Parker BS, Sukumar S, Shim S, Sharma A, Benzecry JM, Power-Charnitsky VA, Deth RC (2004) Activation of methionine synthase by insulin-like growth factor-1 and dopamine: a target for neurodevelopmental toxins and thimerosal. Mol Psychiatry 9:358–370

    CAS  Google Scholar 

  • Wasserman GA, Liu X, Parvez F, Ahsan H, Factor-Litvak P, van Geen A, Slavkovich V, Loiacono NJ, Levy D, Cheng Z, Graziano JH et al (2004) Water arsenic exposure and children’s intellectual function in Araihazar, Bangladesh. Environ Health Perspect 112:1329–1333

    CAS  Google Scholar 

  • Wei YH, Lu CY, Lee HC, Pang CY, Ma YS (1998) Oxidative damage and mutation to mitochondrial DNA and age-dependent decline of mitochondrial respiratory function. Ann N Y Acad Sci 854:155–170

    CAS  Google Scholar 

  • Weihe P, Joensen HD (2012) Dietary recommendation regarding pilot whale meat and blubber in the Faroe Islands. Int J Circumpolar Health 71:18594–18598

    Google Scholar 

  • World Health Organization (2007) Exposure to mercury: a major public health concern, Preventing disease through healthy environment. World Health Organization, Geneva

    Google Scholar 

  • Xu F, Farkas S, Kortbeek S, Zhang F-X, Chen L, Zamponi GW, Syed NI (2012) Mercury-induced toxicity of rat cortical neurons is mediated through N-methyl-D-aspartate receptors. Mol Brain 5:30–57

    CAS  Google Scholar 

  • Yin Z, Milatovic D, Aschner JL, Syversen T, Rocha JBT, Souza DO, Sidoryk M, Albrecht J, Aschner M (2007) Methylmercury induces oxidative injury, alterations in permeability and glutamine transport in cultured astrocytes. Brain Res 1131:1–10

    CAS  Google Scholar 

  • Yoshizawa K, Rimm EB, Morris JS, Spate VL, Hsieh CC, Spiegelman D (2002) Mercury and the risk of coronary heart disease in men. N Engl J Med 347:1755–1760

    CAS  Google Scholar 

  • Zareba G, Cernichiari E, Hojo R, Nitt SM, Weiss B, Mumtaz MM, Jones DE, Clarkson TW (2007) Thimerosal distribution and metabolism in neonatal mice: comparison with methylmercury. J Appl Toxicol 27:511–518

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR, Italy).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Stefania Sinicropi or Giuseppe Genchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carocci, A., Rovito, N., Sinicropi, M.S., Genchi, G. (2014). Mercury Toxicity and Neurodegenerative Effects. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-319-03777-6_1

Download citation

Publish with us

Policies and ethics