Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 880))

  • 2727 Accesses

Abstract

This chapter provides an introduction to concepts and fundamental relationships of pore-scale phenomena in such a way that is hoped to reduce uncertainty in understanding of porous media for a typically trained physicist without a background in the particular subject. The first topic is how and why percolation theory should be considered. Then, certain pitfalls of conventional interpretations are described. In particular we examine in detail the (casually) presumed mapping between pressure-saturation curves and the pore-size distribution, and find that complications due to finite column size, flow rates (equilibrium), and the phase connectivity described in terms of the accessibility function from percolation theory make such assumptions unjustifiable. Finally various treatments of porous media are discussed, such as capillary bundle, network, and fractal models. The serious problems associated with reliance on capillary bundle models are listed and corrections are referred to later chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Raoush, R., Thompson, K., Willson, C.S.: Comparison of network generation techniques for unconsolidated porous media. Soil Sci. Soc. Am. J. 67, 1687–1700 (2003)

    Google Scholar 

  2. Archie, G.E.: The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. Metall. Soc. AIME 146, 54–61 (1942)

    Google Scholar 

  3. Arya, L.M., Paris, J.F.: A physico-empirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Sci. Soc. Am. J. 45, 1023–1030 (1981)

    Google Scholar 

  4. Bakke, S., Øren, P.-E.: 3-D pore-scale modelling of sandstones and flow simulations in the pore networks. SPE J. 2, 136–149 (1997)

    Google Scholar 

  5. Barrett, E.P., Joyner, L.G., Halenda, P.P.: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73(1), 373–380 (1951)

    Google Scholar 

  6. Baytaş, A.F., Akbal, S.: Determination of soil parameters by gamma-ray transmission. Radiat. Meas. 35, 17–21 (2002)

    Google Scholar 

  7. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

    Google Scholar 

  8. Berkowitz, B., Scher, H.: On characterization of anomalous dispersion in porous and fractured media. Water Resour. Res. 31, 1461–1466 (1995)

    Google Scholar 

  9. Bernabé, Y.: The transport properties of networks of cracks and pores. J. Geophys. Res. 100(B3), 4231–4241 (1995)

    Google Scholar 

  10. Bernabé, Y., Bruderer, C.: Effect of the variance of pore size distribution on the transport properties of heterogeneous networks. J. Geophys. Res., Solid Earth 103(B1), 513–525 (1998)

    Google Scholar 

  11. Bernabé, Y., Revil, A.: Pore-scale heterogeneity, energy dissipation and the transport properties of rocks. Geophys. Res. Lett. 22, 1529–1532 (1995)

    Google Scholar 

  12. Berryman, J.G., Milton, G.W.: Normalization constraint for variational bounds on fluid permeability. J. Chem. Phys. 83, 754–760 (1985)

    Google Scholar 

  13. Bittelli, M., Campbell, G.S., Flury, M.: Characterization of particle-size distribution in soils with a fragmentation model. Soil Sci. Soc. Am. J. 63, 782–788 (1999)

    Google Scholar 

  14. Broadbent, S.R., Hammersley, J.M.: Percolation processes, 1. Crystals and mazes. Proc. Camb. Philos. Soc. 53, 629–641 (1957)

    Google Scholar 

  15. Brooks, R.H., Corey, A.T.: Hydraulic properties of porous media. Hydrology Paper 3, Colorado State Univ (1964)

    Google Scholar 

  16. Buckingham, E.: Studies on the movement of soil moisture. Bull. No. 38, Bureau of Soils, USDA, Washington, DC (1907)

    Google Scholar 

  17. Burdine, N.T.: Relative permeability calculations from pore size distribution data. Petr. Trans. AIME 198, 71–77 (1953)

    Google Scholar 

  18. Camassel, B., Sghaier, N., Prat, M., Ben-Nasrallah, S.: Evaporation in a capillary tube of square cross-section: application to ion transport. Chem. Eng. Sci. 60, 815–826 (2005)

    Google Scholar 

  19. Carman, P.C.: Fluid flow through granular beds. Trans. Inst. Chem. Eng. London 15, 150–166 (1937)

    Google Scholar 

  20. Carsel, R.F., Parrish, R.S.: Developing joint probability distributions of soil water retention characteristics. Water Resour. Res. 24(5), 755–769 (1988)

    Google Scholar 

  21. Chatzis, I., Dullien, F.A.L.: Modelling pore structures by 2-D and 3-D networks with application to sandstones. J. Can. Pet. Technol. Jan.-Mar., 97–108 (1977)

    Google Scholar 

  22. Chelidze, T.L., Gueguen, Y., Ruffet, C.: Electrical spectroscopy of porous rocks: a review—II. Experimental results and interpretation. Geophys. J. Int. 137, 16–34 (1999)

    Google Scholar 

  23. Cheng, C.-L., Perfect, E.: Forward prediction of height-averaged capillary pressure-saturation parameters using the BC-vG upscaler. Vadose Zone J. (2013). doi:10.2136/vzj2012.0174

    Google Scholar 

  24. Childress, S.: Viscous flow past a random array of spheres. J. Chem. Phys. 56, 2527 (1972)

    Google Scholar 

  25. Clapp, R.B., Hornberger, G.M.: Empirical equations for some soil hydraulic properties. Water Resour. Res. 14, 601–604 (1978)

    Google Scholar 

  26. Clarkson, C.R., Solano, N., Bustin, R.M., Bustin, A.M.M., Chalmers, G.R.L., He, L., Melnichenko, Y.B., Radlinski, A.P., Blach, T.P.: Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 103, 606–616 (2012)

    Google Scholar 

  27. Clennell, M.B.: Tortuosity: a guide through the maze. In: Lovell, M.A., Harvey, P.K. (eds.) Developments in Petrophysics, vol. 122, pp. 299–344. Geological Society, London (1997)

    Google Scholar 

  28. Clerc, J.P., Podolskiy, V.A., Sarychev, A.K.: Precise determination of the conductivity exponent of 3D percolation using exact numerical renormalization. Eur. Phys. J. B 15, 507–516 (2000)

    Google Scholar 

  29. Collins, R.E.: Flow of Fluids Through Porous Materials. PennWell, Tulsa (1961)

    Google Scholar 

  30. Corning, P.A.: The re-emergence of “emergence”: a venerable concept in search of a theory. Complexity 7(6), 18–30 (2002)

    Google Scholar 

  31. Czachor, H., Doerr, S.H., Lichner, L.: Water retention of repellent and subcritical repellent soils: new insights from model and experimental investigations. J. Hydrol. 380(1–2), 104–111 (2010)

    Google Scholar 

  32. Danckwerts, P.: Continuous flow systems: distribution of residence times. Chem. Eng. Sci. 2(1), 1–13 (1953)

    Google Scholar 

  33. Darcy, H.: Les Fontaines Publiques de la Ville de Dijon. Dalmont, Paris (1856)

    Google Scholar 

  34. Delesse, M.A.: Pour déterminer la composition des roches. Ann. Mines 13(4), 379–388 (1848)

    Google Scholar 

  35. Dullien, F.A.L.: New network permeability model of porous media. AIChE J. 21, 299–307 (1975)

    Google Scholar 

  36. Dullien, F.A.L.: Porous Media: Fluid Transport and Pore Structure, 2nd edn. Academic Press, San Diego (1992)

    Google Scholar 

  37. Dullien, F.A.L., Dhawan, G.K.: Characterization of pore structure by a combination of quantitative photomicrography and mercury porosimetry. J. Colloid Interface Sci. 47(2), 337–349 (1974)

    Google Scholar 

  38. Ewing, R.P., Gupta, S.C.: Modeling percolation properties of random media using a domain network. Water Resour. Res. 29, 3169–3178 (1993)

    Google Scholar 

  39. Ewing, R.P., Gupta, S.C.: Percolation and permeability in partially structured networks. Water Resour. Res. 29, 3179–3188 (1993)

    Google Scholar 

  40. Ewing, R.P., Hu, Q., Liu, C.: Scale dependence of intragranular porosity, tortuosity, and diffusivity. Water Resour. Res. 46, W06513 (2010). doi:10.1029/2009WR008183

    Google Scholar 

  41. Ewing, R.P., Liu, C., Hu, Q.: Modeling intragranular diffusion in low-connectivity granular media. Water Resour. Res. 48, W03518 (2012). doi:10.1029/2011WR011407

    Google Scholar 

  42. Fatt, I.: The network model of porous media. I. Capillary pressure characteristics. Trans. Metall. Soc. AIME 207, 144–159 (1956)

    Google Scholar 

  43. Fatt, I.: The network model of porous media. II. Dynamic properties of a single size tube network. Trans. Metall. Soc. AIME 207, 160–163 (1956)

    Google Scholar 

  44. Fatt, I.: The network model of porous media. III. Dynamic properties of networks with tube radius distribution. Trans. Metall. Soc. AIME 207, 164–177 (1956)

    Google Scholar 

  45. Fredlund, M.D., Wilson, G.W., Fredlund, D.G.: Use of the grain-size distribution for estimation of the soil-water characteristic curve. Can. Geotech. J. 39(5), 1103–1117 (2002)

    Google Scholar 

  46. Freeze, R.A., Cherry, J.A.: Groundwater. Prentice-Hall, Englewood Cliffs (1979)

    Google Scholar 

  47. Gao, G., Zhan, H., Feng, S., Huang, G., Mao, X.: Comparison of alternative models for simulating anomalous solute transport in a large heterogeneous soil column. J. Hydrol. 377, 391–404 (2009)

    Google Scholar 

  48. Gee, G.W., Or, D.: Particle-size analysis. In: Dane, J.H., Topp, G.C. (eds.) Methods of Soil Analysis, Part 4, Physical Methods, pp. 255–293. Soil Sci. Soc. Am, Madison (2002)

    Google Scholar 

  49. Gelhar, L.W., Welty, C., Rehfeldt, K.R.: A critical review of data on field-scale dispersion in aquifers. Water Resour. Res. 28(7), 1955–1974 (1992)

    Google Scholar 

  50. Giesche, H.: Mercury porosimetry: a general (practical) overview. Part. Part. Syst. Charact. 23, 9–19 (2006)

    Google Scholar 

  51. Gingold, D.B., Lobb, C.J.: Percolative conduction in three dimensions. Phys. Rev. B 42(13), 8220–8224 (1990)

    Google Scholar 

  52. Glantz, R., Hilpert, M.: Dual models of pore spaces. Adv. Water Resour. 30(2), 227–248 (2007)

    Google Scholar 

  53. Grant, C.D., Groenevelt, P.H., Robinson, N.I.: Application of the Groenevelt-Grant soil water retention model to predict the hydraulic conductivity. Aust. J. Soil Res. 48, 447–458 (2010)

    Google Scholar 

  54. Gupta, S.C., Larson, W.E.: Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resour. Res. 15, 1633–1635 (1979)

    Google Scholar 

  55. Gutjahr, A.L., Gelhar, L.W., Bakr, A.A., MacMillan, J.R.: Stochastic analysis of spatial variability in subsurface flows. 2. Evalution and application. Water Resour. Res. 14(5), 953–959 (1978)

    Google Scholar 

  56. Gvirtzman, H., Roberts, P.V.: Pore scale spatial analysis of two immiscible fluids in porous media. Water Resour. Res. 27, 1167 (1991)

    Google Scholar 

  57. Hall, P.L., Mildner, D.F.R., Borst, R.L.: Small-angle scattering studies of the pore spaces of shaly rocks. J. Geophys. Res. 91, 2183–2192 (1986)

    Google Scholar 

  58. Hansen, D.: Discussion of “On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils”. Can. Geotech. J. 40, 616–628 (2004)

    Google Scholar 

  59. Hasimoto, H.: On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5, 317–328 (1959)

    Google Scholar 

  60. Hillel, D.: Fundamentals of Soil Physics. Academic Press, New York (1980)

    Google Scholar 

  61. Hilpert, M., Miller, C.T., Gray, W.G.: Stability of a fluid-fluid interface in a biconical pore segment. J. Colloid Interface Sci. 267, 397–407 (2003)

    Google Scholar 

  62. Hinch, E.J.: An averaged-equation approach to particle interactions in a fluid suspension. J. Fluid Mech. 83, 695–720 (1977)

    Google Scholar 

  63. Howells, I.D.: Drag due to the motion of a Newtonian fluid through a sparse random array of small fixed rigid objects. J. Fluid Mech. 64, 449–475 (1974)

    Google Scholar 

  64. Hunt, A.G.: A note comparing van Genuchten and percolation theoretical formulations of the hydraulic properties of unsaturated media. Vadose Zone J. 3, 1483–1488 (2004)

    Google Scholar 

  65. Hunt, A.G., Gee, G.W.: Application of critical path analysis to fractal porous media: comparison with examples from the Hanford site. Adv. Water Resour. 25, 129–146 (2002)

    Google Scholar 

  66. Hunt, A.G., Ewing, R.P., Horton, R.: What’s wrong with soil physics? Soil Sci. Soc. Am. J. 77, 1877–1887 (2013)

    Google Scholar 

  67. Iassonov, P., Gebrenegus, T., Tuller, M.: Segmentation of X-ray computed tomography images of porous materials: a crucial step for characterization and quantitative analysis of pore structures. Water Resour. Res. 45, W09415 (2009). doi:10.1029/2009WR008087

    Google Scholar 

  68. Jalbert, M., Dane, J.H.: Correcting laboratory retention curves for hydrostatic fluid distributions. Soil Sci. Soc. Am. J. 65, 648–654 (2001)

    Google Scholar 

  69. Johnson, D.L., Schwartz, L.M.: Unified theory of geometric effects in transport properties of porous media. Paper presented at SPWLA, 30th Annual Logging Symposium, Soc. of Prof. Well Log. Anal, Houston, TX (1989)

    Google Scholar 

  70. Journel, A.G., Huijbregts, Ch.J.: Mining Geostatistics. Blackwell, Caldwell (2003)

    Google Scholar 

  71. Kang, M., Perfect, E., Cheng, C.-L., Bilheux, H.Z., Lee, J., Horita, J., Warren, J.M.: Multiple pixel-scale soil water retention curves quantified by neutron radiography. Adv. Water Resour. (2014, in press)

    Google Scholar 

  72. Kate, J.M., Gokhale, C.S.: A simple method to estimate complete pore size distribution of rocks. Eng. Geol. 84(1–2), 48–69 (2006)

    Google Scholar 

  73. Katz, A.J., Thompson, A.H.: Quantitative prediction of permeability in porous rock. Phys. Rev. B 34, 8179–8181 (1986)

    Google Scholar 

  74. Kennedy, W.D., Herrick, D.C.: Conductivity models for Archie rocks. Geophysics 77(3), WA109–WA128 (2012)

    Google Scholar 

  75. Ketcham, R.A., Carlson, W.D.: Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comput. Geosci. 27, 381–400 (2001)

    Google Scholar 

  76. Khaleel, R., Relyea, J.F.: Variability of Gardner’s alpha for coarse-textured sediments. Water Resour. Res. 37, 1567–1575 (2001)

    Google Scholar 

  77. Khan, A.U.H., Jury, W.A.: A laboratory study of the dispersion scale effect in column outflow experiments. J. Contam. Hydrol. 5, 119–131 (1990)

    Google Scholar 

  78. Kläfter, J., Silbey, R.: Derivation of the continuous-time random walk equation. Phys. Rev. Lett. 44, 55–58 (1980)

    Google Scholar 

  79. Klobes, P., Meyer, K., Munro, R.G.: Porosity and specific surface area measurements for solid materials. US Department of Commerce, Technology Administration, National Institute of Standards and Technology (2006)

    Google Scholar 

  80. Knackstedt, M.A., Sheppard, A.P., Sahimi, M.: Pore network modelling of two-phase flow in porous rock: the effect of correlated heterogeneity. Adv. Water Resour. 24, 257–277 (2001)

    Google Scholar 

  81. Kosugi, K.: Three-parameter lognormal distribution model for soil water retention. Water Resour. Res. 30(4), 891–901 (1994)

    Google Scholar 

  82. Kozeny, J.: Über kapillare Leitung des Wassers im Boden. Sitzungsber. Akad. Wiss. Wien 136(2a), 271–306 (1927)

    Google Scholar 

  83. Lafuma, A., Quéré, D.: Superhydrophobic states. Nat. Mater. 2, 457–460 (2003)

    Google Scholar 

  84. Lago, M., Araujo, M.: Threshold pressure in capillaries with polygonal cross-section. J. Colloid Interface Sci. 243, 219–226 (2001)

    Google Scholar 

  85. Larson, R.E., Higdon, J.J.L.: A periodic grain consolidation model of porous media. Phys. Fluids A 1, 38–47 (1989)

    Google Scholar 

  86. Larson, R.G., Scriven, L.E., Davis, H.T.: Percolation theory of residual phases in porous media. Nature 268, 409–413 (1977)

    Google Scholar 

  87. Levine, S., Reed, P., Shutts, G., Neale, G.: Some aspects of wetting/dewetting of a porous medium. Powder Technol. 17, 163–181 (1977)

    Google Scholar 

  88. Lindquist, W.B.: 3DMA General Users Manual. Report No. Report No. SUSB-AMS-99-20, Dept. Applied Math. & Stat., SUNY—Stony Brook (1999)

    Google Scholar 

  89. Lindquist, W.B.: Network flow model studies and 3D pore structure. Contemp. Math. 295, 355–366 (2002)

    Google Scholar 

  90. Lindquist, W.B.: The geometry of primary drainage. J. Colloid Interface Sci. 296, 655–668 (2006)

    Google Scholar 

  91. Lindquist, W.B., Venkatarangan, A., Dunsmuir, J., Wong, T.: Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones. J. Geophys. Res. 105(B9), 21509–21521 (2000)

    Google Scholar 

  92. Liu, H.H., Dane, J.H.: Improved computational procedure for retention relations of immiscible fluids using pressure cells. Soil Sci. Soc. Am. J. 59, 1520–1524 (1995)

    Google Scholar 

  93. Ma, Z., Merkus, H.G., de Smet, J.G.A.E., Heffels, C., Scarlett, B.B.: New developments in particle characterization by laser diffraction: size and shape. Powder Technol. 111, 66–78 (2000)

    Google Scholar 

  94. Mallory, K.: Active subclusters in percolative hopping transport. Phys. Rev. B 47, 7819–7826 (1993)

    Google Scholar 

  95. Martys, N.S., Hagedorn, J.G., Goujon, D., Devaney, J.E.: Large-scale simulations of single- and multicomponent flow in porous media. Proc. SPIE 3772, Developments in X-Ray Tomography II, 205 (September 22, 1999) (1999); doi:10.1117/12.363723

  96. Melnichenko, Y.B., Wignall, G.D.: Small-angle neutron scattering in materials science: recent practical applications. J. Appl. Phys. 102(2), 021101 (2007)

    Google Scholar 

  97. Miller, E.E., Miller, R.D.: Physical theory for capillary flow phenomena. J. Appl. Phys. 27, 324–332 (1956)

    Google Scholar 

  98. Millington, R.J., Quirk, J.P.: Permeability of porous solids. Trans. Faraday Soc. 57, 1200–1206 (1961)

    Google Scholar 

  99. Mohanty, K.K.: Fluids in porous media: Two-phase distribution and flow. Ph.D. thesis, University of Minnesota (1980)

    Google Scholar 

  100. Mohanty, K.K., Davis, H.T., Scriven, L.E.: Physics of oil entrapment in water-wet rock. SPE Reserv. Eng. 2(1), 113–128 (1987)

    Google Scholar 

  101. Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(3), 513–522 (1976). doi:10.1029/WR012i003p00513

    Google Scholar 

  102. Oleson, K.W., Lawrence, D.M., Bonan, G.B., Flanner, M.G., Kluzek, E., Lawrence, P.J., Levis, S., Swenson, S.C., Thornton, P.E., et al.: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-478+STR, NCAR, Boulder, Colorado (2010)

    Google Scholar 

  103. Orr, F.M., Scriven, L.E., Rivas, A.P.: Pendular rings between solids: meniscus properties and capillary force. J. Fluid Mech. 67(4), 723–742 (1975)

    Google Scholar 

  104. Pachepsky, Y.A., Timlin, D., Várallyay, G.: Artificial neural networks to estimate soil water retention from easily measurable data. Soil Sci. Soc. Am. J. 60, 727–733 (1996)

    Google Scholar 

  105. Peth, S., Horn, R., Beckman, F., Donath, T., Fischer, J., Smucker, A.J.M.: Three-dimensional quantification of intra-aggregate pore-space features using synchrotron radiation-based microtomography. Soil Sci. Soc. Am. J. 72, 897–907 (2008)

    Google Scholar 

  106. Pollak, M.: Non-crystalline Semiconductors. CRC Press, Boca Raton (1987). Chap. 5a

    Google Scholar 

  107. Posadas, A.N.D., Gimenez, D., Bittelli, M., Vaz, C.M.P., Flury, M.: Multifractal characterization of soil particle-size distributions. Soil Sci. Soc. Am. J. 65, 1361–1367 (2001)

    Google Scholar 

  108. Prager, S.: Viscous flow through porous media. Phys. Fluids 4, 1477–1482 (1961)

    Google Scholar 

  109. Radlinski, A.P., Mastalerz, M., Hinde, A.L., Hainbuchner, M., Rauch, H., Baron, M., Lin, J.S., Fan, L., Thiyagarajan, P.: Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal. Int. J. Coal Geol. 59, 245–271 (2004)

    Google Scholar 

  110. Reynolds, W.D., Elrick, D.E., Young, E.G., Booltink, H.W.G., Bouma, J.: Saturated and field-saturated water flow parameters. In: Dane, J.H., Topp, G.C. (eds.) Methods of soil analysis, Part 4, Physical methods, pp. 797–878. Soil Sci. Soc. Am., Madison

    Google Scholar 

  111. Roberts, J.J., Lin, W.: Electrical properties of partially saturated Topopah Spring tuff: water distribution as a function of saturation. Water Resour. Res. 33(4), 577–587 (1997)

    Google Scholar 

  112. Rose, W.: Volumes and surface areas of pendular rings. J. Appl. Phys. 29(4), 687–691 (1958)

    Google Scholar 

  113. Rose, W.: Myths about later-day extensions of Darcy’s law. J. Pet. Sci. Eng. 26, 187–198 (2000)

    Google Scholar 

  114. Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.M., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W., Unger, K.K.: Recommendations for the characterization of porous solids (Technical report). Pure Appl. Chem. 66(8), 1739–1758 (1994)

    Google Scholar 

  115. Sahimi, M.: Flow phenomena in rocks—from continuum models to fractals, percolation, cellular automata, and simulated annealing. Rev. Mod. Phys. 65(4), 1393–1534 (1993)

    Google Scholar 

  116. Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches. Wiley-VCH, New York (2011), 709 pp.

    Google Scholar 

  117. Sahimi, M., Imdakm, A.O.: The effect of morphological disorder on hydrodynamic dispersion in flow through porous media. J. Phys. A, Math. Gen. 21, 3833–3870 (1988)

    Google Scholar 

  118. Sakaki, T., Illangasekare, T.H.: Comparison of height-averaged and point-measured capillary pressure-saturation relations for sands using a modified Tempe cell. Water Resour. Res. 43, W12502 (2007). doi:10.1029/2006WR005814

    Google Scholar 

  119. Sangani, A.S., Acrivos, A.: Slow flow through a periodic array of spheres. Int. J. Multiph. Flow 8, 343–360 (1982)

    Google Scholar 

  120. Schaap, M.G., Leij, F.J., van Genuchten, M.T.: Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 251, 163–176 (2001)

    Google Scholar 

  121. Scheibe, T., Yabusaki, S.: Scaling of flow and transport behavior in heterogeneous groundwater systems. Adv. Water Resour. 22, 223–238 (1998)

    Google Scholar 

  122. Scher, H., Montroll, E.W.: Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 12(6), 2455–2477 (1975)

    Google Scholar 

  123. Scher, H., Shlesinger, M., Bendler, J.: Time-scale invariance in transport and relaxation. Phys. Today 44(1), 26–34 (1991). doi:10.1063/1.881289

    Google Scholar 

  124. Sen, P.N.: Time-dependent diffusion coefficient as a probe of geometry. Concepts Magn. Reson. A 23A(1), 1–21 (2004)

    Google Scholar 

  125. Silin, D., Patzek, T.: Pore space morphology analysis using maximal inscribed spheres. Physica A 371, 336–360 (2006)

    Google Scholar 

  126. Sutanto, E., Davis, H.T., Scriven, L.E.: Liquid distributions in porous rocks examined by cryo-scanning electron microscopy. Paper 20518-MS, SPE Ann. Tech. Conf. Exhib. New Orleans, LA (1990)

    Google Scholar 

  127. Swartzendruber, D.: Non-Darcy behavior in liquid-saturated porous media. J. Geophys. Res. 67(13), 5205–5213 (1962)

    Google Scholar 

  128. Tamari, S.: Optimum design of the constant-volume gas pycnometer for determining the volume of solid particles. Meas. Sci. Technol. 15, 549–558 (2004)

    Google Scholar 

  129. Taylor, G.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 219(1137), 186–203 (1953)

    Google Scholar 

  130. Toledo, P.G., Novy, R.A., Davis, H.T., Scriven, L.E.: Hydraulic conductivity of porous media at low water content. Soil Sci. Soc. Am. J. 54, 673–679 (1990)

    Google Scholar 

  131. Toledo, P.G., Scriven, L.E., Davis, H.T.: Pore space statistics and capillary pressure curves from volume controlled porosimetry. In: Paper SPE 19618, 64th Ann. Tech. Conf. and Exhib. of the SPE, San Antonio, Texas, Oct 8–11 (1989)

    Google Scholar 

  132. Torquato, S., Lu, B.: Rigorous bounds on the fluid permeability: effect of polydispersivity in grain size. Phys. Fluids A 2, 487–490 (1990)

    Google Scholar 

  133. Tuller, M., Or, D.: Hydraulic conductivity of variably saturated porous media—laminar film and corner flow in angular pore space. Water Resour. Res. 37(5), 1257–1276 (2001)

    Google Scholar 

  134. Tuller, M., Or, D., Dudley, L.M.: Adsorption and capillary condensation in porous media: liquid retention and interfacial configurations in angular pores. Water Resour. Res. 35(7), 1949–1964 (1999)

    Google Scholar 

  135. Tyler, S.W., Wheatcraft, S.W.: Fractal scaling of soil particle-size distributions—analysis and limitations. Soil Sci. Soc. Am. J. 56, 362–369 (1992)

    Google Scholar 

  136. van Brakel, J., Heertjes, P.M.: Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor. Int. J. Heat Mass Transf. 17, 1093–1103 (1974)

    Google Scholar 

  137. van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Google Scholar 

  138. Vanderborght, J., Gonzales, C., Vanclooster, M., Mallants, D., Feyen, J.: Effects of soil type and water flux on solute transport. Soil Sci. Soc. Am. J. 61, 372–389 (1997)

    Google Scholar 

  139. Vanderborght, J., Vereecken, H.: Review of dispersivities for transport modeling in soils. Vadose Zone J. 6, 29–52 (2007). doi:10.2136/vzj2006.0096

    Google Scholar 

  140. Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M.G., van Genuchten, M.T.: Using pedotransfer functions to estimate the van Genuchten-Mualem soil hydraulic properties: a review. Vadose Zone J. 9, 795–820 (2010)

    Google Scholar 

  141. Vogel, H.-J.: Topological characterization of porous media. In: Morphology of Condensed Matter. Lecture Notes in Physics, vol. 600, pp. 75–92. Springer, Berlin (2002)

    Google Scholar 

  142. Washburn, E.W.: Note on a method of determining the distribution of pore sizes in a porous material. Proc. Natl. Acad. Sci. USA 7(4), 115–116 (1921)

    Google Scholar 

  143. Webber, B., Corbettc, P., Sempled, K.T., Ogbonnayad, U., Teele, W.S., Masiellof, C.A., Fisherg, Q.J., Valenza, J.J. II, Song, Y.-Q., Hu, Q.H.: An NMR study of porous rock and biochar containing organic material. Microporous Mesoporous Mater. 178, 94–98 (2013)

    Google Scholar 

  144. Weissberg, H.L., Prager, S.: Viscous flow through porous media. II. Approximate three-point correlation function. Phys. Fluids 5, 1390–1392 (1962)

    Google Scholar 

  145. Weissberg, H.L., Prager, S.: Viscous flow through porous media. III. Upper bounds on the permeability for a simple random geometry. Phys. Fluids 13, 2958–2965 (1970)

    Google Scholar 

  146. Wilkinson, D., Willemsen, J.F.: Invasion percolation: a new form of percolation theory. J. Phys. A, Math. Gen. 16, 3365–3376 (1983)

    Google Scholar 

  147. Wu, Q., Borkovec, M., Sticher, H.: On particle-size distributions in soils. Soil Sci. Soc. Am. J. 57, 883–890 (1993)

    Google Scholar 

  148. Yanuka, M., Dullien, F.A.L., Elrick, D.E.: Serial sectioning and digitization of porous media for two- and three-dimensional analysis and reconstruction. J. Microsc. 135(2), 159–168 (1984)

    Google Scholar 

  149. Yates, S.R.: An analytical solution for one-dimensional transport in heterogeneous porous media. Water Resour. Res. 26(10), 2331–2338 (1990)

    Google Scholar 

  150. Zick, A.A., Homsy, G.M.: Stokes flow through periodic arrays of spheres. J. Fluid Mech. 115, 13–26 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Problems

Problems

  1. 3.1

    Remember that pumice (specific gravity of the solid portion typically ca. 2.65) may float on water. Does this mean that the holes in pumice cannot be connected? Use the Scher and Zallen results (Chap. 1) to set an upper limit on the porosity of a regular pumice, for which all the “holes” are the same size. Assume that the holes are spherical. What lattice would you choose for this calculation?

  2. 3.2

    Assuming a solid material density of 2.65, calculate the minimum porosity required for the condition that pumice float. Is the Scher and Zallen result useful as a predictor? In a fractal model the porosity of a medium may approach 1. Do you expect that the holes in pumice (due to gas bubbles) are of uniform size, or highly variable?

  3. 3.3

    If the holes in pumice are due to gas bubbles, did the gas escape? How? Can the relevant porosities for these questions be the porosity not accessible to an infinite cluster instead of the bulk porosity?

  4. 3.4

    Suppose that the pumice was formed in a violent explosion that resulted when the gas bubbles “percolated.” What sort of size distribution of pieces of pumice would you expect to find?

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hunt, A., Ewing, R., Ghanbarian, B. (2014). Porous Media Primer for Physicists. In: Percolation Theory for Flow in Porous Media. Lecture Notes in Physics, vol 880. Springer, Cham. https://doi.org/10.1007/978-3-319-03771-4_3

Download citation

Publish with us

Policies and ethics