Skip to main content

Hybrid Neuro-Fuzzy Network Identification for Autonomous Underwater Vehicles

  • Conference paper
Swarm, Evolutionary, and Memetic Computing (SEMCCO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8298))

Included in the following conference series:

Abstract

Autonomous Underwater Vehicles (AUVs) are ideal platforms for aquatic search and rescue operations and exploration. The AUV poses serious challenges due to its complex, inherently nonlinear and time-varying dynamics. In addition, its hydrodynamic coefficients are difficult to model accurately because of their variations under different navigational conditions and manoeuvring in uncertain environments. This paper introduces an identifier scheme for identification of non-linear systems with disturbances based on Hybrid Neuro-Fuzzy Network (HNFN) technique. The method comprises of an automatic structure-generating phase using entropy based technique. The accuracy of the model is suitably controlled using the entropy measure. To improve the accuracy and also for generalization of the model to handle different data sets, Differential Evolution technique (DE) is employed. Finally, Hardware In-Loop (HIL) simulation and real-time experiments using the proposed algorithm to identify the 6-DOF UNSW Canberra AUV’s dynamics are implemented. The modelling performance and generalisation capability are seen to be superior with our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Sjöberg, J., et al.: Nonlinear Black-Box Modeling In System Identification: A Unified Overview. Automatica 31(12), 1691–1724 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Khalik, M.A., et al.: Parameter Identification Problem: Real-Coded GA Approach. Applied Mathematics and Computation 187(2), 1495–1501 (2007)

    Article  MATH  Google Scholar 

  3. Morgera, S.D., Armour, B.: Structured Maximum Likelihood Autoregressive Parameter Estimation. In: International Conference on Acoustics, Speech, And Signal Processing, ICASSP 1989 (1989)

    Google Scholar 

  4. Salman, S.A., Puttige, V.R., Anavatti, S.G.: Real-Time Validation and Comparison of Fuzzy Identification and State-Space Identification for a UAV Platform. In: 2006 IEEE International Conference on Control Applications, Computer Aided Control System Design. IEEE (2006)

    Google Scholar 

  5. Soderstrom, T., et al.: Least Squares Parameter Estimation of Continuous-Time ARX Models from Discrete-Time Data. IEEE Transactions on Automatic Control 42(5), 659–673 (1997)

    Article  MathSciNet  Google Scholar 

  6. Kim, J., et al.: Estimation of Hydrodynamic Coefficients for an AUV Using Nonlinear Observers. IEEE Journal of Oceanic Engineering 27(4), 830–840 (2002)

    Article  Google Scholar 

  7. Wang, L.X.: Design and Analysis of Fuzzy Identifiers of Nonlinear Dynamic Systems. IEEE Transactions on Automatic Control 40(1), 11–23 (1995)

    Article  MATH  Google Scholar 

  8. Li, L., Yang, Y., Peng, H.: Fuzzy System Identification via Chaotic Ant Swarm. Chaos, Solitons & Fractals 41(1), 401–409 (2009)

    Article  MATH  Google Scholar 

  9. Healey, A.J.: Model Based Predictive Control of Auvs for Station Keeping in a Shallow Water Wave Environment, Dtic Document (2005)

    Google Scholar 

  10. Petrich, J., Neu, W.L., Stilwell, D.J.: Identification of a Simplified Auv Pitch Axis Model for Control Design: Theory and Experiments. In: Oceans (2007)

    Google Scholar 

  11. Conte, G., et al.: Evaluation of Hydrodynamics Parameters of a Uuv. A Preliminary Study. In: First International Symposium on Control, Communications and Signal Processing (2004)

    Google Scholar 

  12. Faruq, A., et al.: Optimization of Depth Control for Unmanned Underwater Vehicle Using Surrogate Modeling Technique. In: 2011 4th International Conference on Modeling, Simulation and Applied Optimization, ICMSAO (2011)

    Google Scholar 

  13. Ishii, K., Ura, T., Fujii, T.: A Feedforward Neural Network for Identification and Adaptive Control of Autonomous Underwater Vehicles. In: 1994 IEEE International Conference on Neural Networks, IEEE World Congress on Computational Intelligence (1994)

    Google Scholar 

  14. Ishii, K., Fujii, T., Ura, T.: A Quick Adaptation Method in a Neural Network Based Control System for Auvs. In: Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle Technology, Auv 1994 (1994)

    Google Scholar 

  15. Nauck, D., Klawonn, F., Kruse, R.: Foundations of Neuro-Fuzzy Systems. John Wiley & Sons, Inc. (1997)

    Google Scholar 

  16. Sun, F., et al.: Neuro-Fuzzy Adaptive Control Based on Dynamic Inversion for Robotic Manipulators. Fuzzy Sets And Systems 134(1), 117–133 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lei, Z., et al.: Fuzzy Neural Network Control of Auv Based on Ipso. In: IEEE International Conference on Robotics And Biomimetics, Robio 2008 (2008, 2009)

    Google Scholar 

  18. Bossley, K.M., Brown, M., Harris, C.J.: Neurofuzzy Identification of an Autonomous Underwater Vehicle. International Journal of Systems Science 30(9), 901–913 (1999)

    Article  MATH  Google Scholar 

  19. Storn, R., Price, K.V.: Differential evolution: A simple and efficient adaptive scheme for global optimization over continuous spaces (ICSI, USA, Tech. Rep. TR-95-012 (1995), http://icsi.berkeley.edu/storn/litera.html

  20. Das, S., Suganthan, P.N.: Differential Evolution: A Survey of the State-of-the-Art. IEEE Trans. on Evolutionary Computation 15, 4–31 (2011)

    Article  Google Scholar 

  21. Hassanein, O., Sreenatha, G., Ray, T.: Improved Fuzzy Neural Modeling for Underwater Vehicles. Int. J. World Academy of Science, Engineering and Technology 71, 1208–1215 (2012)

    Google Scholar 

  22. Cheng-Hung, C., Cheng-Jian, L., Chin-Teng, L.: A Functional-Link-Based Neurofuzzy Network for Nonlinear System Control. IEEE Transactions on Fuzzy Systems 16(5), 1362–1378 (2008)

    Article  Google Scholar 

  23. Patra, J.C., et al.: Identification of Nonlinear Dynamic Systems Using Functional Link Artificial Neural Networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 29(2), 254–262 (1999)

    Article  Google Scholar 

  24. Beyhan, S., Alci, M.: Fuzzy Function Based ARX Model and New Fuzzy Basis Function Models for Nonlinear System Identification. Applied Soft Computing J. 10, 439–444 (2010)

    Article  Google Scholar 

  25. Wang, L.X.: A course in fuzzy systems and control. Prentic Hall Inc., USA (1997)

    MATH  Google Scholar 

  26. Salman, A., Sreenatha, G., Jin, Y.C.: Indirect Adaptive Fuzzy Control of Unmanned Aerial Vehicle. In: Proc. 17th Congr. Int. Federation of Automatic Control, Seoul, Korea, pp. 13229–13243 (2008)

    Google Scholar 

  27. Elsayed, S.M., Sarker, R.A., Essam, D.L.: Differential evolution with multiple strategies for solving CEC2011 real-world numerical optimization problems. In: Proc. IEEE Congr. on Evolutionary Computation, New Orleans, US, vol. I, pp. 1041–1048 (2011)

    Google Scholar 

  28. Chang, C.S., Xu, D.Y.: Differential evolution based tuning of fuzzy automatic train operation for mass rapid transit system. IEEE Proc. Electric Power Applications 147(3), 206–212 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Hassanein, O., Sreenatha, G., Ray, T. (2013). Hybrid Neuro-Fuzzy Network Identification for Autonomous Underwater Vehicles. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Dash, S.S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2013. Lecture Notes in Computer Science, vol 8298. Springer, Cham. https://doi.org/10.1007/978-3-319-03756-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03756-1_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03755-4

  • Online ISBN: 978-3-319-03756-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics