Abstract
This paper explains an improved Differential Evolution algorithm based on adaptation of crossover rate and scaling factor using diversity control. Local search is applied to aid convergence process. The mutation strategies involved are modified using random localized method of vector selection to enhance performance. The proposed methodology is applied to SaDE. The proposed Diversity Controlled Parameter adapted Differential Evolution with Local Search (DCPaDE-LS) harmonically coordinates a balance between global and local search, thus ensuring a diversity dynamic which guarantees fast and efficient improvements in the search until detection of a solution with high performance. The performance of the proposed DCPaDE-LS is compared on a set of 26 bound-constrained benchmark functions for 10 and 30 dimensions with respect to average function evaluations (NFE) and success rate (SR) in 30 independent trials. Results show that, proposed method gives better SR for high-dimensional multimodal functions and saving in NFE for most functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Global Opt. 11, 341–359 (1997)
Das, S., Suganthan, P.N.: Differential Evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)
Liu, L., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft Comput. 9(6), 448–462 (2005)
Chakraborty, U.K., Das, S., Konar, A.: Differential evolution with local neighborhood. In: Proc. Congr. Evolut. Comput., Vancouver, BC, Canada, pp. 2042–2049 (2006)
Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)
Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential Evolution Algorithm with Strategy Adaptation for Global Numerical Optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)
Ursem, R.K.: Diversity-Guided Evolutionary Algorithms. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 462–471. Springer, Heidelberg (2002)
Zaharie, D.: Control of population diversity and adaptation in differential evolution algorithms. In: Proc. Mendel 9th Int. Conf. Soft Comput., Brno, CR, pp. 41–46 (2003)
Islam, S.M., Das, S., Ghosh, S., Roy, S., Suganthan, P.N.: An Adaptive Differential Evolution Algorithm with Novel Mutation and Crossover Strategies for Global Numerical Optimization. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics 42(2), 482–500 (2012)
Mallipeddi, R., Suganthan, P.N.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Applied Soft Computing 11(2), 1679–1696 (2011)
Miruna Joe Amali, S., Baskar, S.: Fuzzy logic based diversity controlled self adaptive differential evolution. Engineering Optim. (2012), doi:10.1080/0305215X.2012.713356
Kaelo, P., Ali, M.M.: A numerical study of some modified differential evolution algorithms. Eur. J. Oper. Res. 169, 1176–1184 (2006)
Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall (1996)
Huang, T., Huang, J., Zhang, J.: An orthogonal local search genetic algorithm for the design and optimization of power electronic circuits. In: IEEE Cong. Evol. Comput., Hong Kong, pp. 2452–2459 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Amali, S.M.J., Baskar, S. (2013). Parameter Adaptation in Differential Evolution Based on Diversity Control. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Dash, S.S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2013. Lecture Notes in Computer Science, vol 8297. Springer, Cham. https://doi.org/10.1007/978-3-319-03753-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-03753-0_14
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-03752-3
Online ISBN: 978-3-319-03753-0
eBook Packages: Computer ScienceComputer Science (R0)