Skip to main content

Parameter Adaptation in Differential Evolution Based on Diversity Control

  • Conference paper
Swarm, Evolutionary, and Memetic Computing (SEMCCO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8297))

Included in the following conference series:

Abstract

This paper explains an improved Differential Evolution algorithm based on adaptation of crossover rate and scaling factor using diversity control. Local search is applied to aid convergence process. The mutation strategies involved are modified using random localized method of vector selection to enhance performance. The proposed methodology is applied to SaDE. The proposed Diversity Controlled Parameter adapted Differential Evolution with Local Search (DCPaDE-LS) harmonically coordinates a balance between global and local search, thus ensuring a diversity dynamic which guarantees fast and efficient improvements in the search until detection of a solution with high performance. The performance of the proposed DCPaDE-LS is compared on a set of 26 bound-constrained benchmark functions for 10 and 30 dimensions with respect to average function evaluations (NFE) and success rate (SR) in 30 independent trials. Results show that, proposed method gives better SR for high-dimensional multimodal functions and saving in NFE for most functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Global Opt. 11, 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Das, S., Suganthan, P.N.: Differential Evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

    Article  Google Scholar 

  3. Liu, L., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft Comput. 9(6), 448–462 (2005)

    Article  MATH  Google Scholar 

  4. Chakraborty, U.K., Das, S., Konar, A.: Differential evolution with local neighborhood. In: Proc. Congr. Evolut. Comput., Vancouver, BC, Canada, pp. 2042–2049 (2006)

    Google Scholar 

  5. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

    Article  Google Scholar 

  6. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential Evolution Algorithm with Strategy Adaptation for Global Numerical Optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)

    Article  Google Scholar 

  7. Ursem, R.K.: Diversity-Guided Evolutionary Algorithms. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 462–471. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Zaharie, D.: Control of population diversity and adaptation in differential evolution algorithms. In: Proc. Mendel 9th Int. Conf. Soft Comput., Brno, CR, pp. 41–46 (2003)

    Google Scholar 

  9. Islam, S.M., Das, S., Ghosh, S., Roy, S., Suganthan, P.N.: An Adaptive Differential Evolution Algorithm with Novel Mutation and Crossover Strategies for Global Numerical Optimization. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics 42(2), 482–500 (2012)

    Article  Google Scholar 

  10. Mallipeddi, R., Suganthan, P.N.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Applied Soft Computing 11(2), 1679–1696 (2011)

    Article  Google Scholar 

  11. Miruna Joe Amali, S., Baskar, S.: Fuzzy logic based diversity controlled self adaptive differential evolution. Engineering Optim. (2012), doi:10.1080/0305215X.2012.713356

    Google Scholar 

  12. Kaelo, P., Ali, M.M.: A numerical study of some modified differential evolution algorithms. Eur. J. Oper. Res. 169, 1176–1184 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall (1996)

    Google Scholar 

  14. Huang, T., Huang, J., Zhang, J.: An orthogonal local search genetic algorithm for the design and optimization of power electronic circuits. In: IEEE Cong. Evol. Comput., Hong Kong, pp. 2452–2459 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Amali, S.M.J., Baskar, S. (2013). Parameter Adaptation in Differential Evolution Based on Diversity Control. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Dash, S.S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2013. Lecture Notes in Computer Science, vol 8297. Springer, Cham. https://doi.org/10.1007/978-3-319-03753-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03753-0_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03752-3

  • Online ISBN: 978-3-319-03753-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics