Skip to main content

Relations Between Domain States and Phase Contents in Perovskite-Type Ferroelectric Solid Solutions

  • Conference paper
  • First Online:
Advanced Materials

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 152))

  • 2030 Accesses

Abstract

We develop and generalise crystallographic concepts on the role of non-180° domain (twin) types in the stress relief and phase coexistence in perovskite-type ferroelectric solid solutions near the morphotropic phase boundary. Elastic matching of ferroelectric phases is analysed to show a role of specific domain types in the forming of the phase content. A correlation between volume fractions of the domain types and the composition of the ferroelectric solid solution is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.G. Fesenko, Perovskite Family and Ferroelectricity (Atomizdat, Moscow, 1972). (in Russian)

    Google Scholar 

  2. R.E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure (Oxford University Press, New York, 2005)

    Google Scholar 

  3. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)

    Article  Google Scholar 

  4. VYu. Topolov, Heterogeneous Ferroelectric Solid Solutions. Phases and Domain States (Springer, Berlin, 2012)

    Book  Google Scholar 

  5. Y. Xu, Ferroelectric Materials and their Applications (North-Holland, Amsterdam, 1991)

    Google Scholar 

  6. H. Schaumburg (ed.), Keramik (B. G. Teubner, Stuttgart 1994)

    Google Scholar 

  7. G. Helke, K. Lubitz, in Piezoelectricity, Evolution and Future of a Technology, ed. by W. Heywang, K. Lubitz, W. Wersing (Springer, Berlin, 2008) p. 89

    Google Scholar 

  8. L.E. Cross, ibid., p. 131

    Google Scholar 

  9. K.M. Rabe, M. Dawber, C. Lichtensteiger, et al., in Physics of Ferroelectrics. A Modern Perspective, ed. by K.M. Rabe, C.H. Ahn, J.-M. Triscone (Springer, Berlin, 2007)

    Google Scholar 

  10. G.A. Smolensky, V.A. Bokov, V.A. Isupov, et al., in Physics of Ferroelectric Phenomena, ed. by G.A. Smolensky (Nauka, Leningrad 1985), (in Russian)

    Google Scholar 

  11. B. Noheda, D.E. Cox, G. Shirane, Phys. Rev. B 66, 054104 (2002)

    Article  Google Scholar 

  12. B. Noheda, D.E. Cox, Phase Trans. 79, 5 (2006)

    Article  Google Scholar 

  13. A.K. Singh, D. Pandey, O. Zakharko, Phys. Rev. B 74, 024101 (2006)

    Article  Google Scholar 

  14. B. Noheda, Z. Zhong, D.E. Cox et al., Phys. Rev. B 65, 224101 (2002)

    Article  Google Scholar 

  15. H. Cao, J. Li, D. Viehland, Phys. Rev. B 73, 184110 (2006)

    Article  Google Scholar 

  16. A.L. Roitburd, Sov. Phys. Uspehi 17, 326 (1974)

    Article  Google Scholar 

  17. A.L. Roytburd, Phase Trans. 45, 1 (1993)

    Article  Google Scholar 

  18. E.G. Fesenko, V.G. Gavrilyachenko, A.F. Semenchev, Domain Structure of Multiaxial Ferroelectric Crystals (Rostov University Press, Rostov-on-Don, 1990). (in Russian)

    Google Scholar 

  19. D. La-Orauttapong, B. Noheda, Z.-G. Ye et al., Phys. Rev. B 65, 144101 (2002)

    Article  Google Scholar 

  20. V.Yu. Topolov, Mater. Lett. 66, 57 (2012)

    Google Scholar 

  21. V.Yu. Topolov, Ferroelectrics 428, 8 (2012)

    Google Scholar 

  22. R. Ranjan, K. Appala Raju, Phys. Rev. B 82, 054119 (2010)

    Google Scholar 

  23. V. Kothai, A. Senyshyn, R. Ranjan, J. Appl. Phys. 113, 084102 (2013)

    Article  Google Scholar 

  24. S.P. Singh, D. Pandey, S. Yoon et al., Appl. Phys. Lett. 93, 182910 (2008)

    Article  Google Scholar 

  25. Y. Yamashita, Y. Hosono, in Piezoelectricity, Evolution and Future of a Technology, ed. by W. Heywang, K. Lubitz, W. Wersing (Springer, Berlin 2008)

    Google Scholar 

  26. L.E. Pustovaya, Russ. J. Appl. Chem. 80, 1036 (2007)

    Article  Google Scholar 

  27. G. Metrat, Ferroelectrics 26, 801 (1980)

    Article  Google Scholar 

  28. J. Fousek, V. Janovec, J. Appl. Phys. 40, 135 (1969)

    Article  Google Scholar 

  29. S.P. Singh, S. Yoon, S. Baik et al., Appl. Phys. Lett. 97, 122902 (2010)

    Article  Google Scholar 

  30. S. Bhattacharjee, D. Pandey, J. Appl. Phys. 110, 084105 (2011)

    Article  Google Scholar 

  31. V.Yu. Topolov, J. Appl. Phys. 111, 094109 (2012)

    Google Scholar 

  32. V.F. Freitas, L.F. Cótica, I.A. Santos et al., J. Eur. Ceram. Soc. 31, 2965 (2011)

    Article  Google Scholar 

  33. T.L. Burnett, T.P. Comyn, A.J. Bell et al., J. Phys: Conf. Ser. 26, 239 (2006)

    Google Scholar 

  34. W.-M. Zhu, H.-Y. Guo, Z.-G. Ye, J. Mater. Res. 22, 2136 (2007)

    Article  Google Scholar 

  35. W.-M. Zhu, H.-Y. Guo, Z.-G. Ye, Phys. Rev. B 78, 014401 (2008)

    Article  Google Scholar 

  36. S. Bhattacharjee, D. Pandey, J. Appl. Phys. 107, 124112 (2010)

    Article  Google Scholar 

  37. S. Bhattacharjee, K. Taji, C. Moriyoshi et al., Phys. Rev. B 84, 104116 (2011)

    Article  Google Scholar 

  38. S. Geetika, A.M. Umarji, Mater. Sci. Eng. B, 167, 171 (2010)

    Google Scholar 

  39. V.Yu. Topolov, Cryst. Res. Technol. 47, 1054 (2012)

    Google Scholar 

  40. J. Chaigneau, J.M. Kiat, C. Malibert, C. Bogicevic, Phys. Rev. B 76, 094111 (2007)

    Article  Google Scholar 

  41. K. Datta, D. Walker, P.A. Thomas, Phys. Rev. B 82, 144108 (2010)

    Article  Google Scholar 

  42. T. Hungria, F. Houdellier, M. Algueró, A. Castro, Phys. Rev. B 81, 100102 (2010)

    Article  Google Scholar 

  43. K. Datta, S. Gorfman, P.A. Thomas, Appl. Phys. Lett. 95, 251901 (2009)

    Article  Google Scholar 

  44. B. Noheda, D.E. Cox, G. Shirane et al., Phys. Rev. B 63, 014103 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank Prof. Dr. C. R. Bowen (University of Bath, UK), Prof. Dr. A. E. Panich, Prof. Dr. I. A. Parinov, Prof. Dr. A. A. Nesterov, Prof. Dr. A. A. Panich, Dr. V. V. Eremkin, Dr. V. G. Smotrakov, and Dr. Yu. N. Zakharov (Southern Federal University, Rostov-on-Don, Russia), Prof. Dr. D. Viehland (Virginia Tech, VA, USA), Prof. Dr. D. Pandey (Banaras Hindu University, India), Dr. R. Ranjan (Indian Institute of Science, Bangalore, India), Prof. Dr. A. S. Sidorkin and Prof. Dr. B. M. Darinsky (Voronezh State University, Russia), Prof. Dr. L. N. Korotkov (Voronezh State Technical University, Russia), and Prof. Dr. S.-H. Chang (National Kaohsiung Marine University, Taiwan, ROC) for their continuing interest in heterogeneous FE and related materials. This work has been carried out at the financial support from the Ministry of Education and Science of Russia within the framework of the Federal Purposive Programme entitled ‘Studies and Working out on Priority Directions of the Development of the Research Complex of Russia’ for 2007–2013, and the author acknowledges this support with gratitude. The research subject is also concerned with the Programme Supporting the Research at the Southern Federal University (Russia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Topolov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Topolov, V.Y. (2014). Relations Between Domain States and Phase Contents in Perovskite-Type Ferroelectric Solid Solutions. In: Chang, SH., Parinov, I., Topolov, V. (eds) Advanced Materials. Springer Proceedings in Physics, vol 152. Springer, Cham. https://doi.org/10.1007/978-3-319-03749-3_8

Download citation

Publish with us

Policies and ethics