Skip to main content

Protective Lung Ventilation During General Anesthesia: Is There Any Evidence?

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2014

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM,volume 2014))

  • 2159 Accesses

Abstract

In acute respiratory distress syndrome (ARDS) several studies have shown that mechanical ventilation with high tidal volume (VT) and low levels of positive end-expiratory pressure (PEEP) can promote ventilator-induced lung injury (VILI), thus increasing morbidity and mortality [1]. An open lung strategy, combining the use of low VT with adequate PEEP levels and recruitment maneuvers, has thus been recommended in ARDS patients [2–4]. In patients without ARDS admitted to intensive care units (ICUs), who required mechanical ventilation for at least 12 hours, the use of a high VT significantly increased the inflammatory response [5, 6]. In contrast to critically ill patients, during general anesthesia, mechanical ventilation is required only for a few hours, thus the beneficial effects of lung-protective ventilation remain questionable. Moreover, there are limited data from few randomized controlled trials with only small cohorts of enrolled patients.

Two recent meta-analyses that enrolled patients from ICUs and the operating room (OR) showed that lung-protective ventilation was associated with lower mortality and postoperative complications [2, 7]. However, there are no recommendations regarding optimal ventilatory strategies in patients without lung injury during general anesthesia.

In the present article, we provide a comprehensive picture of the current literature on lung-protective ventilation during general anesthesia in patients without ARDS, focusing on the applications of this strategy in patients undergoing abdominal, thoracic and cardiac surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Plotz FB, Slutsky AS, van Vught AJ, Heijnen CJ (2004) Ventilator-induced lung injury and multiple system organ failure: a critical review of facts and hypotheses. Intensive Care Med 30:1865–1872

    Article  PubMed  Google Scholar 

  2. Serpa NA, Cardoso SO, Manetta JA et al (2012) Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA 308:1651–1659

    Article  Google Scholar 

  3. De Prost N, Dreyfuss D (2012) How to prevent ventilator-induced lung injury? Minerva Anestesiol 78:1054–1066

    PubMed  Google Scholar 

  4. Bernard GR, Artigas A, Brigham KL et al (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824

    Article  CAS  PubMed  Google Scholar 

  5. Pinheiro DO, Hetzel MP, dos Anjos SM, Dallegrave D, Friedman G (2010) Mechanical ventilation with high tidal volume induces inflammation in patients without lung disease. Crit Care 14:R39

    Article  Google Scholar 

  6. Determann RM, Royakkers A, Wolthuis EK et al (2010) Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Crit Care 14:R1

    Article  PubMed  Google Scholar 

  7. Hemmes SN, Serpa NA, Schultz MJ (2013) Intraoperative ventilatory strategies to prevent postoperative pulmonary complications: a meta-analysis. Curr Opin Anaesthesiol 26:126–133

    Article  PubMed  Google Scholar 

  8. Jaber S, Coisel Y, Chanques G et al (2012) A multicentre observational study of intra-operative ventilatory management during general anaesthesia: tidal volumes and relation to body weight. Anaesthesia 67:999–1008

    Article  CAS  PubMed  Google Scholar 

  9. Hess DR, Kondili D, Burns E, Bittner EA, Schmidt UH (2013) A 5-year observational study of lung-protective ventilation in the operating room: A single-center experience. J Crit Care 28:533–533

    Article  PubMed  Google Scholar 

  10. Fernandez-Bustamante A, Wood CL, Tran ZV, Moine P (2011) Intraoperative ventilation: incidence and risk factors for receiving large tidal volumes during general anesthesia. BMC Anesthesiol 11:22

    Article  PubMed Central  PubMed  Google Scholar 

  11. Duggan M, Kavanagh BP (2005) Pulmonary atelectasis: a pathogenic perioperative entity. Anesthesiology 102:838–854

    Article  PubMed  Google Scholar 

  12. Cai H, Gong H, Zhang L, Wang Y, Tian Y (2007) Effect of low tidal volume ventilation on atelectasis in patients during general anesthesia: a computed tomographic scan. J Clin Anesth 19:125–129

    Article  PubMed  Google Scholar 

  13. Joyce CJ, Williams AB (1999) Kinetics of absorption atelectasis during anesthesia: a mathematical model. J Appl Physiol 86:1116–1125

    CAS  PubMed  Google Scholar 

  14. Hedenstierna G, Rothen HU (2000) Atelectasis formation during anesthesia: causes and measures to prevent it. J Clin Monit Comput 16:329–335

    Article  CAS  PubMed  Google Scholar 

  15. Simonneau G, Vivien A, Sartene R et al (1983) Diaphragm dysfunction induced by upper abdominal surgery. Role of postoperative pain. Am Rev Respir Dis 128:899–903

    CAS  PubMed  Google Scholar 

  16. Aubrun F, Gazon M, Schoeffler M, Benyoub K (2012) Evaluation of perioperative risk in elderly patients. Minerva Anestesiol 78:605–618

    CAS  PubMed  Google Scholar 

  17. Otis DR Jr., Johnson M, Pedley TJ, Kamm RD (1993) Role of pulmonary surfactant in airway closure: a computational study. J Appl Physiol 75:1323–1333

    PubMed  Google Scholar 

  18. Tusman G, Bohm SH, Warner DO, Sprung J (2012) Atelectasis and perioperative pulmonary complications in high-risk patients. Curr Opin Anaesthesiol 25:1–10

    Article  CAS  PubMed  Google Scholar 

  19. Arozullah AM, Daley J, Henderson WG, Khuri SF (2000) Multifactorial risk index for predicting postoperative respiratory failure in men after major noncardiac surgery. The National Veterans Administration Surgical Quality Improvement Program. Ann Surg 232:242–253

    Article  CAS  PubMed  Google Scholar 

  20. Smetana GW, Lawrence VA, Cornell JE (2006) Preoperative pulmonary risk stratification for noncardiothoracic surgery: systematic review for the American College of Physicians. Ann Intern Med 144:581–595

    Article  PubMed  Google Scholar 

  21. Wrigge H, Zinserling J, Stuber F et al (2000) Effects of mechanical ventilation on release of cytokines into systemic circulation in patients with normal pulmonary function. Anesthesiology 93:1413–1417

    Article  CAS  PubMed  Google Scholar 

  22. Wrigge H, Uhlig U, Zinserling J et al (2004) The effects of different ventilatory settings on pulmonary and systemic inflammatory responses during major surgery. Anesth Analg 98:775–781

    Article  PubMed  Google Scholar 

  23. Determann RM, Wolthuis EK, Choi G et al (2008) Lung epithelial injury markers are not influenced by use of lower tidal volumes during elective surgery in patients without preexisting lung injury. Am J Physiol Lung Cell Mol Physiol 294:L344–L350

    Article  CAS  PubMed  Google Scholar 

  24. Treschan TA, Kaisers W, Schaefer MS et al (2012) Ventilation with low tidal volumes during upper abdominal surgery does not improve postoperative lung function. Br J Anaesth 109:263–271

    Article  CAS  PubMed  Google Scholar 

  25. Weingarten TN, Whalen FX, Warner DO et al (2010) Comparison of two ventilatory strategies in elderly patients undergoing major abdominal surgery. Br J Anaesth 104:16–22

    Article  CAS  PubMed  Google Scholar 

  26. Severgnini P, Selmo G, Lanza C et al (2013) Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function. Anesthesiology 118:1307–1321

    Article  CAS  PubMed  Google Scholar 

  27. Futier E, Constantin JM, Paugam-Burtz C et al (2013) A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med 369:428–437

    Article  CAS  PubMed  Google Scholar 

  28. Hemmes SN, Severgnini P, Jaber S et al (2011) Rationale and study design of PROVHILO – a worldwide multicenter randomized controlled trial on protective ventilation during general anesthesia for open abdominal surgery. Trials 12:111

    Article  PubMed Central  PubMed  Google Scholar 

  29. Fernandez-Perez ER, Keegan MT, Brown DR, Hubmayr RD, Gajic O (2006) Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology 105:14–18

    Article  PubMed  Google Scholar 

  30. van der Werff YD, van der Houwen HK, Heijmans PJ et al (1997) Postpneumonectomy pulmonary edema. A retrospective analysis of incidence and possible risk factors. Chest 111:1278–1284

    Article  PubMed  Google Scholar 

  31. Cohen E (2001) Management of one-lung ventilation. Anesthesiol Clin North America 19:475–495

    Article  CAS  PubMed  Google Scholar 

  32. Wilson WCBJ (2005) Anesthesia for thoracic surgery. In: Miller RD (ed) Miller's Anesthesia, 6th edn. Elsevier Churchill Livingstone, Philadelphia, pp 1894–1895

    Google Scholar 

  33. Schilling T, Kozian A, Huth C et al (2005) The pulmonary immune effects of mechanical ventilation in patients undergoing thoracic surgery. Anesth Analg 101:957–965

    Article  PubMed  Google Scholar 

  34. Licker M, Diaper J, Villiger Y et al (2009) Impact of intraoperative lung-protective interventions in patients undergoing lung cancer surgery. Crit Care 13:R41

    Article  PubMed  Google Scholar 

  35. Yang M, Ahn HJ, Kim K et al (2011) Does a protective ventilation strategy reduce the risk of pulmonary complications after lung cancer surgery?: a randomized controlled trial. Chest 139:530–537

    Article  PubMed  Google Scholar 

  36. Michelet P, D'Journo XB, Roch A et al (2006) Protective ventilation influences systemic inflammation after esophagectomy: a randomized controlled study. Anesthesiology 105:911–919

    Article  PubMed  Google Scholar 

  37. De Somer F (2013) End-organ protection in cardiac surgery. Minerva Anestesiol 79:285–293

    PubMed  Google Scholar 

  38. Butler J, Rocker GM, Westaby S (1993) Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg 55:552–559

    Article  CAS  PubMed  Google Scholar 

  39. Wan S, LeClerc JL, Vincent JL (1997) Inflammatory response to cardiopulmonary bypass: mechanisms involved and possible therapeutic strategies. Chest 112:676–692

    Article  CAS  PubMed  Google Scholar 

  40. Cremer J, Martin M, Redl H et al (1996) Systemic inflammatory response syndrome after cardiac operations. Ann Thorac Surg 61:1714–1720

    Article  CAS  PubMed  Google Scholar 

  41. Wrigge H, Uhlig U, Baumgarten G et al (2005) Mechanical ventilation strategies and inflammatory responses to cardiac surgery: a prospective randomized clinical trial. Intensive Care Med 31:1379–1387

    Article  PubMed  Google Scholar 

  42. Koner O, Celebi S, Balci H, Cetin G, Karaoglu K, Cakar N (2004) Effects of protective and conventional mechanical ventilation on pulmonary function and systemic cytokine release after cardiopulmonary bypass. Intensive Care Med 30:620–626

    Article  PubMed  Google Scholar 

  43. Sundar S, Novack V, Jervis K et al (2011) Influence of low tidal volume ventilation on time to extubation in cardiac surgical patients. Anesthesiology 114:1102–1110

    Article  PubMed Central  PubMed  Google Scholar 

  44. Zupancich E, Paparella D, Turani F et al (2005) Mechanical ventilation affects inflammatory mediators in patients undergoing cardiopulmonary bypass for cardiac surgery: a randomized clinical trial. J Thorac Cardiovasc Surg 130:378–383

    Article  PubMed  Google Scholar 

  45. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  46. Amato MB, Barbas CS, Medeiros DM et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354

    Article  CAS  PubMed  Google Scholar 

  47. Reis MD, Gommers D, Struijs A et al (2005) Ventilation according to the open lung concept attenuates pulmonary inflammatory response in cardiac surgery. Eur J Cardiothorac Surg 28:889–895

    Article  Google Scholar 

  48. Reis MD, Struijs A, Koetsier P et al (2005) Open lung ventilation improves functional residual capacity after extubation in cardiac surgery. Crit Care Med 33:2253–2258

    Article  Google Scholar 

  49. Chaney MA, Nikolov MP, Blakeman BP, Bakhos M (2000) Protective ventilation attenuates postoperative pulmonary dysfunction in patients undergoing cardiopulmonary bypass. J Cardiothorac Vasc Anesth 14:514–518

    Article  CAS  PubMed  Google Scholar 

  50. Wrigge H, Pelosi P (2011) Tidal volume in patients with normal lungs during general anesthesia: lower the better? Anesthesiology 114:1011–1013

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Chiumello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland and BioMed Central Ltd.

About this chapter

Cite this chapter

Coppola, S., Froio, S., Chiumello, D. (2014). Protective Lung Ventilation During General Anesthesia: Is There Any Evidence?. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2014. Annual Update in Intensive Care and Emergency Medicine, vol 2014. Springer, Cham. https://doi.org/10.1007/978-3-319-03746-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03746-2_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03745-5

  • Online ISBN: 978-3-319-03746-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics