Skip to main content

Tracking Animals in a Dynamic Environment: Remote Sensing Image Time Series

  • Chapter
  • First Online:
Spatial Database for GPS Wildlife Tracking Data

Abstract

This chapter looks into the spatiotemporal dimension of both animal tracking data sets and the dynamic environmental data that can be associated with them. Typically, these geographic layers derive from remote sensing measurements, commonly those collected by sensors deployed on earth-orbiting satellites, which can be updated on a monthly, weekly or even daily basis. The modelling potential for integrating these two levels of ecological complexity (animal movement and environmental variability) is huge and comes from the possibility to investigate processes as they build up, i.e. in a full dynamic framework. This chapter’s exercise will describe how to integrate dynamic environmental data in the spatial database and join to animal locations one of the most used indices for ecological productivity and phenology, the normalised difference vegetation index (NDVI) derived from MODIS. The exercise is based on the database built so far in Chaps. 2, 3, 4, 5 and 6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.esrl.noaa.gov/.

  2. 2.

    https://lpdaac.usgs.gov/.

  3. 3.

    http://mgel.env.duke.edu/mget.

  4. 4.

    http://www.movebank.org/node/6607.

  5. 5.

    http://www.r-project.org/.

  6. 6.

    http://www.postgresql.org/docs/9.2/static/rangetypes.html.

  7. 7.

    See the full list of operators and functions here: http://www.postgresql.org/docs/9.2/static/functions-range.html.

  8. 8.

    Note that this is not an a SQL code and cannot be run in an SQL interface.

  9. 9.

    http://www.postgresql.org/docs/9.2/static/queries-with.html.

References

  • Bannari A, Morin D, Bonn F, Huete AR (1995) A review of vegetation indices. Remote Sens Rev 13:95–120

    Article  Google Scholar 

  • Basille M, Fortin D, Dussault C, Ouellet JP, Courtois R (2013) Ecologically based definition of seasons clarifies predator-prey interactions. Ecography 36:220–229

    Article  Google Scholar 

  • Cagnacci F, Boitani L, Powell RA, Boyce MS (2010) Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges. Philos Trans R Soc B: Biol Sci 365:2157–2162

    Article  Google Scholar 

  • Cracknell AP (1997) The advanced very high resolution radiometer (AVHRR). Taylor & Francis, London

    Google Scholar 

  • Eerens H, Haesen D, Rembold F, Urbano F, Tote C, Bydekerke L (2014) Image time series processing for agriculture monitoring. Environ Modell Softw 53:154–162

    Google Scholar 

  • Escadafal R, Bohbot H, Mégier J (2001) Changes in arid mediterranean ecosystems on the long term through earth observation (CAMELEO). Final Report of EU contract IC18-CT97-0155, Edited by Space Applications Institute, JRC, Ispra, Italy

    Google Scholar 

  • Frair JL, Fieberg J, Hebblewhite M, Cagnacci F, DeCesare NJ, Pedrotti L (2010) Resolving issues of imprecise and habitat biased locations in ecological analyses using GPS telemetry data. Philos Trans R Soc B: Biol Sci 365:2187–2200

    Article  Google Scholar 

  • Land Processes DAAC (2008) MODIS reprojection tool user’s manual. USGS Earth Resources Observation and Science (EROS) Center

    Google Scholar 

  • Lunetta RS, Knight JF, Ediriwickrema J, Lyon JG, Dorsey Worthy L (2006) Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens Environ 105:142–154

    Article  Google Scholar 

  • Maisongrande P, Duchemin B, Dedieu G (2004) VEGETATION/SPOT: an operational mission for the Earth monitoring; presentation of new standard products. Int J Remote Sens 25:9–14

    Article  Google Scholar 

  • Manly BFJ, McDonald LL, Thomas DL, McDonald TL, Erickson WP (2002) Resource selection by animals. Kluver Academic Publishers, Dordrecht

    Google Scholar 

  • Maselli F, Barbati A, Chiesi M, Chirici G, Corona P (2006) Use of remotely sensed and ancillary data for estimating forest gross primary productivity in Italy. Remote Sens Environ 100:563–575

    Article  Google Scholar 

  • McClain CR (2009) A decade of satellite ocean color observations. Annu Rev Marine Sci 1:19–42

    Google Scholar 

  • MODIS (1999) MODIS Vegetation Index (MOD 13): Algorithm Theoretical Basis Document Page 26 of 29 (version 3)

    Google Scholar 

  • Moorcroft P (2012) Mechanistic approaches to understanding and predicting mammalian space use: recent advances, future directions. J Mammal 93:903–916

    Article  Google Scholar 

  • Moriondo M, Maselli F, Bindi M (2007) A simple model of regional wheat yield based on NDVI data. Eur J Agron 26:266–274

    Article  Google Scholar 

  • Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci 105:19052–19059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pettorelli N, Gaillard JM, Mysterud A, Duncan P, Stenseth NC, Delorme D, Van Laere G, Toigo C, Klein F (2006) Using a proxy of plant productivity (NDVI) to find key periods for animal performance: the case of roe deer. Oikos 112:565–572

    Article  Google Scholar 

  • Townshend JRG, Justice CO (1986) Analysis of the dynamics of African vegetation using the normalized difference vegetation index. Int J Remote Sens 8:1189–1207

    Article  Google Scholar 

  • Turchin P (1998) Quantitative analysis of movement: measuring and modeling population redistribution in plants and animals. Sinauer Associates, Sunderland

    Google Scholar 

  • Verhoef W, Menenti M, Azzali S (1996) A colour composite of NOAA-AVHRR–NDVI based on time series analysis (1981–1992). Int J Remote Sens 17:231–235

    Article  Google Scholar 

  • Yu XF, Zhuang DF (2006) Monitoring forest phenophases of Northeast China based on MODIS NDVI data. Resour Sci 28:111–117

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Basille .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Basille, M., Urbano, F., Racine, P., Capecchi, V., Cagnacci, F. (2014). Tracking Animals in a Dynamic Environment: Remote Sensing Image Time Series. In: Urbano, F., Cagnacci, F. (eds) Spatial Database for GPS Wildlife Tracking Data. Springer, Cham. https://doi.org/10.1007/978-3-319-03743-1_7

Download citation

Publish with us

Policies and ethics