Embedded Data on Intelligent Products – Impact on Real-Time Applications

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 183)


New challenges and opportunities arise with the Internet of Things (IoT), making it possible to link any objects of the real world with the virtual one. In recent years, IoT has become increasingly popular in industrial applications (e.g. for the inclusion of data related to the product history). It might therefore be asked what is the impact on real-time applications when accessing data from the object instead of accessing it from the database. To assess that impact, this paper develops an approach that uses jointly two simulators: CPN Tools® and OPNET Modeler®. This approach is then applied on a benchmark scenario.


Internet of Things Intelligent product Real-time system Data dissemination Product life cycle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wong, C.Y., Mcfarlane, D., Zaharudin, A.A., Agarwal, V.: The Intelligent Product Driven Supply Chain. In: International Conference on Systems, Man and Cybernetics, pp. 4–6 (2002)Google Scholar
  2. 2.
    McFarlane, D., Giannikas, V., Wong, A.C., Harrison, M.: Product intelligence in industrial control: Theory and practice. Annual Reviews in Control (2013)Google Scholar
  3. 3.
    Främling, K., Holmström, J., Loukkola, J., Nyman, J., Kaustell, A.: Sustainable plm through intelligent products. Engineering Applications of Artificial Intelligence 26(2), 789–799 (2013)CrossRefGoogle Scholar
  4. 4.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Computer Networks 54(15), 2787–2805 (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Sundmaeker, H., Guillemin, P., Friess, P., Woelfflé, S.: Vision and challenges for realising the Internet of Things. Cluster of European Research Projects on the Internet of Things, European Commision (2010)Google Scholar
  6. 6.
    Kiritsis, D.: Closed-loop plm for intelligent products in the era of the internet of things. Computer-Aided Design 43(5), 479–501 (2011)CrossRefGoogle Scholar
  7. 7.
    Meyer, G., Främling, K., Holmström, J.: Intelligent products: A survey. Computers in Industry 60(3), 137–148 (2009)CrossRefGoogle Scholar
  8. 8.
    Jun, H.B., Suh, H.W.: Decision on the memory size of embedded information systems in an ubiquitous maintenance environment. Computers & Industrial Engineering 56(1), 444–451 (2009)CrossRefGoogle Scholar
  9. 9.
    Kubler, S., Derigent, W., Thomas, A., Rondeau, E.: Embedding data on “communicating materials” from context-sensitive information analysis. Journal of Intelligent Manufacturing (2013), doi:10.1007/s10845-013-0745-yGoogle Scholar
  10. 10.
    Suzuki, S., Harrison, M.: Data synchronization specification. aerospace-id program report. Technical report, Auto-ID Labs, University of Cambridge (2006)Google Scholar
  11. 11.
    Chan, D., Roddick, J.: Context-sensitive mobile database summarisation. In: 26th Australasian Computer Science Conference, vol. 16, pp. 139–149 (2003)Google Scholar
  12. 12.
    Dongkai, Y., Wenli, L.: The wireless channel modeling for rfid system with opnet. In: Proceedings of the 5th International Conference on Wireless Communications, Networking and Mobile Computing, pp. 3803–3805 (2009)Google Scholar
  13. 13.
    Hababeh, I., Bowring, N., Ramachandran, M.: A method for fragment allocation design in the distributed database systems. In: The 6th Annual UAE University Research Conference (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.School of ScienceAalto UniversityEspooFinland
  2. 2.CRAN, UMR 7039Université de LorraineVandœuvre-lès-NancyFrance
  3. 3.CRAN, UMR 7039CNRSVandœuvre lès NancyFrance

Personalised recommendations