Skip to main content

MicroRNAs in Solid Tumors

  • Chapter
  • First Online:
MicroRNAs: Key Regulators of Oncogenesis

Abstract

MicroRNAs (miRNAs) are a class of non-coding RNAs that hybridize to mRNAs inducing either translation repression or mRNA cleavage. MiRNAs regulate a variety of biological processes in the cell, including development, cell differentiation, proliferation, apoptosis and their abnormal expression levels are closely associated with pathogenesis of cancers. In this scenario, several high-throughput technologies studies have revealed miRNA roles in classifying tumors and predicting patient outcome with high accuracy. Because of their ability to concurrently target multiple pathways miRNA-based anticancer therapies are being developed, either alone or in combination with current targeted therapies, with the goal to improve the response and increase cure rates. Here, we highlight recent advances on the use of miRNAs as a potential approach for diagnosis and prognosis of solid cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akao Y, Nakagawa Y, Kitade Y, Kinoshita T, Naoe T (2007a) Downregulation of microRNAs-143 and -145 in B-cell malignancies. Cancer Sci 98(12):1914–1920

    CAS  PubMed  Google Scholar 

  • Akao Y, Nakagawa Y, Naoe T (2007b) MicroRNA-143 and -145 in colon cancer. DNA Cell Biol 26(5):311–320

    CAS  PubMed  Google Scholar 

  • Akao Y, Nakagawa Y, Hirata I, Iio A, Itoh T, Kojima K et al (2010) Role of anti-oncomirs miR-143 and -145 in human colorectal tumors. Cancer Gene Ther 17(6):398–408

    CAS  PubMed  Google Scholar 

  • Aqeilan RI, Calin GA, Croce CM (2010) miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 17(2):215–220

    CAS  PubMed  Google Scholar 

  • Au Yeung CL, Tsang TY, Yau PL, Kwok TT (2011) Human papillomavirus type 16 E6 induces cervical cancer cell migration through the p53/microRNA-23b/urokinase-type plasminogen activator pathway. Oncogene 30(21):2401–2410

    CAS  PubMed  Google Scholar 

  • Babashah S, Soleimani M (2011) The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis. Eur J Cancer 47(8):1127–1137

    CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    CAS  PubMed  Google Scholar 

  • Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ et al (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8(10):R214

    PubMed Central  PubMed  Google Scholar 

  • Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP et al (2007) MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297(17):1901–1908

    CAS  PubMed  Google Scholar 

  • Bo J, Yang G, Huo K, Jiang H, Zhang L, Liu D et al (2011) MicroRNA-203 suppresses bladder cancer development by repressing bcl-w expression. FEBS J 278(5):786–792

    CAS  PubMed  Google Scholar 

  • Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L et al (2008) The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14(11):1271–1277

    CAS  PubMed  Google Scholar 

  • Bosch FX, de Sanjose S (2003) Human papillomavirus and cervical cancer-burden and assessment of causality. J Natl Cancer Inst Monogr 31:3–13

    PubMed  Google Scholar 

  • Boyer SN, Wazer DE, Band V (1996) E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res 56(20):4620–4624

    CAS  PubMed  Google Scholar 

  • Budhu A, Jia HL, Forgues M, Liu CG, Goldstein D, Lam A et al (2008) Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 47(3):897–907

    CAS  PubMed  Google Scholar 

  • Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S et al (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9(6):582–589

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866

    CAS  PubMed  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101(9):2999–3004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Callegari E, Elamin BK, Giannone F, Milazzo M, Altavilla G, Fornari F et al (2012) Liver tumorigenicity promoted by microRNA-221 in a mouse transgenic model. Hepatology 56(3):1025–1033

    CAS  PubMed  Google Scholar 

  • Catto JW, Miah S, Owen HC, Bryant H, Myers K, Dudziec E et al (2009) Distinct microRNA alterations characterize high- and low-grade bladder cancer. Cancer Res 69(21):8472–8481

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65(14):6029–6033

    CAS  PubMed  Google Scholar 

  • Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26(6):745–752

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chang KH, Miller N, Kheirelseid EA, Ingoldsby H, Hennessy E, Curran CE et al (2011) MicroRNA-21 and PDCD4 expression in colorectal cancer. Eur J Surg Oncol 37(7):597–603

    CAS  PubMed  Google Scholar 

  • Chen Y, Liu W, Chao T, Zhang Y, Yan X, Gong Y et al (2008) MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett 272(2):197–205

    CAS  PubMed  Google Scholar 

  • Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y et al (2009) Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 28(10):1385–1392

    CAS  PubMed  Google Scholar 

  • Ciafrè SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334(4):1351–1358

    PubMed  Google Scholar 

  • Clapé C, Fritz V, Henriquet C, Apparailly F, Fernandez PL, Iborra F et al (2009) miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS One 4(10):e7542

    PubMed Central  PubMed  Google Scholar 

  • Conti A, Aguennouz M, La Torre D, Tomasello C, Cardali S, Angileri FF et al (2009) miR-21 and 221 upregulation and miR-181b downregulation in human grade II-IV astrocytic tumors. J Neurooncol 93(3):325–332

    CAS  PubMed  Google Scholar 

  • Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67(4):8994–9000

    CAS  PubMed  Google Scholar 

  • Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N et al (2006) Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci U S A 103(18):7024–7029

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cui JG, Zhao Y, Sethi P, Li YY, Mahta A, Culicchia F et al (2010) Micro-RNA-128 (miRNA-128) down-regulation in glioblastoma targets ARP5 (ANGPTL6), Bmi-1 and E2F-3a, key regulators of brain cell proliferation. J Neurooncol 98(9):297–304

    CAS  PubMed  Google Scholar 

  • Di Leva G, Croce CM (2010) Roles of small RNAs in tumor formation. Trends Mol Med 16(6):257–267

    PubMed Central  PubMed  Google Scholar 

  • Di Leva G, Gasparini P, Piovan C, Ngankeu A, Garofalo M, Taccioli C et al (2010) MicroRNA cluster 221–222 and estrogen receptor alpha interactions in breast cancer. J Natl Cancer Inst 102(10):706–721

    PubMed  Google Scholar 

  • Dillhoff M, Liu J, Frankel W, Croce C, Bloomston M (2008) MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J Gastrointest Surg 12(12):2171–2176

    PubMed  Google Scholar 

  • Dumitrescu RG (2009) Epigenetic targets in cancer epidemiology. Methods Mol Biol 471(4):457–467

    CAS  PubMed  Google Scholar 

  • Dyson N, Howley PM, Munger K, Harlow E (1989) The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243(4893):934–937

    CAS  PubMed  Google Scholar 

  • Feber A, Xi L, Luketich JD, Pennathur A, Landreneau RJ, Wu M et al (2008) MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg 135(2):255–260

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feber A, Xi L, Pennathur A, Gooding WE, Bandla S, Wu M et al (2011) MicroRNA prognostic signature for nodal metastases and survival in esophageal adenocarcinoma. Ann Thorac Surg 91(5):1523–1530

    PubMed Central  PubMed  Google Scholar 

  • Ferretti E, De Smaele E, Po A, Di Marcotullio L, Tosi E, Espinola MS et al (2009) MicroRNA profiling in human medulloblastoma. Int J Cancer 124(3):568–577

    CAS  PubMed  Google Scholar 

  • Fornari F, Gramantieri L, Ferracin M, Veronese A, Sabbioni S, Calin GA et al (2008) MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 27(43):5651–5661

    CAS  PubMed  Google Scholar 

  • Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283(2):1026–1033

    CAS  PubMed  Google Scholar 

  • Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS et al (2008) MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28(17):5369–5380

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafre SA et al (2007) miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27(Kip1). J Biol Chem 282(32):23716–23724

    CAS  PubMed  Google Scholar 

  • Garofalo M, Croce CM (2011) microRNAs: master regulators as potential therapeutics in cancer. Annu Rev Pharmacol Toxicol 51:25–43

    CAS  PubMed  Google Scholar 

  • Garofalo M, Di Leva G, Romano G, Nuovo G, Suh SS, Ngankeu A et al (2009) miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 16(6):498–509

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garofalo M, Quintavalle C, Romano G, Croce CM, Condorelli G (2012) miR221/222 in cancer: their role in tumor progression and response to therapy. Curr Mol Med 12(1):27–33

    CAS  PubMed Central  PubMed  Google Scholar 

  • Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G et al (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68(22):9125–9130

    CAS  PubMed  Google Scholar 

  • Gong J, Zhang JP, Li B, Zeng C, You K, Chen MX et al (2013) MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R. Oncogene 32(25):3071–3079

    CAS  PubMed  Google Scholar 

  • Gregersen LH, Jacobsen AB, Frankel LB, Wen J, Krogh A, Lund AH (2010) MicroRNA-145 targets YES and STAT1 in colon cancer cells. PLoS One 5(1):e8836

    PubMed Central  PubMed  Google Scholar 

  • Greither T, Grochola LF, Udelnow A, Lautenschläger C, Würl P, Taubert H (2010) Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. Int J Cancer 126(1):73–80

    CAS  PubMed  Google Scholar 

  • He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134

    CAS  PubMed  Google Scholar 

  • Hu Y, Correa AM, Hoque A, Guan B, Ye F, Huang J et al (2011) Prognostic significance of differentially expressed miRNAs in esophageal cancer. Int J Cancer 128(1):132–143

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S et al (2008) The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10(2):202–210

    CAS  PubMed  Google Scholar 

  • Huang X, Liang M, Dittmar R, Wang L (2013) Extracellular MicroRNAs in urologic malignancies: chances and challenges. Int J Mol Sci 14(7):14785–14799

    PubMed Central  PubMed  Google Scholar 

  • Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K (2010) Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 39(5):761–772

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16):7065–7070

    CAS  PubMed  Google Scholar 

  • Ito M, Kato T, Wakabayashi T (2009) The modulation of microRNAs by type I IFN through the activation of signal transducers and activators of transcription 3 in human glioma. Mol Cancer Res 7(12):2022–2030

    PubMed  Google Scholar 

  • Iwaya T, Yokobori T, Nishida N, Kogo R, Sudo T, Tanaka F et al (2012) Downregulation of miR-144 is associated with colorectal cancer progression via activation of mTOR signaling pathway. Carcinogenesis 33(14):2391–2397

    CAS  PubMed  Google Scholar 

  • Jabbar SF, Abrams L, Glick A, Lambert PF (2009) Persistence of high-grade cervical dysplasia and cervical cancer requires the continuous expression of the human papillomavirus type 16 E7 oncogene. Cancer Res 69(10):4407–4414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5):635–647

    CAS  PubMed  Google Scholar 

  • Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128(4):683–692

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kasinski AL, Slack FJ (2011) Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 11(12):849–864

    CAS  PubMed  Google Scholar 

  • Kent OA, Chivukula RR, Mullendore M, Wentzel EA, Feldmann G, Lee KH et al (2010) Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev 24(24):2754–2759

    CAS  PubMed  Google Scholar 

  • Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T et al (2010) The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 17(1):28–40

    CAS  PubMed  Google Scholar 

  • Kong D, Li Y, Wang Z, Banerjee S, Ahmad A, Kim HR et al (2009) miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells 27(8):1712–1721

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kong D, Banerjee S, Ahmad A, Li Y, Wang Z, Sethi S et al (2010) Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One 5(8):e12445

    PubMed Central  PubMed  Google Scholar 

  • Kong KL, Kwong DL, Chan TH, Law SY, Chen L, Li Y et al (2012) MicroRNA-375 inhibits tumour growth and metastasis in oesophageal squamous cell carcinoma through repressing insulin-like growth factor 1 receptor. Gut 61(1):33–42

    CAS  PubMed  Google Scholar 

  • Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW et al (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137(6):1005–1017

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kurashige J, Kamohara H, Watanabe M, Tanaka Y, Kinoshita K, Saito S et al (2012) Serum microRNA-21 is a novel biomarker in patients with esophageal squamous cell carcinoma. J Surg Oncol 106(2):188–192

    CAS  PubMed  Google Scholar 

  • le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A et al (2007) Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26(15):3699–3708

    PubMed  Google Scholar 

  • Lee YS, Dutta A (2007) The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 21(9):1025–1030

    CAS  PubMed  Google Scholar 

  • Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL et al (2007) Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120(5):1046–1054

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JW, Choi CH, Choi JJ, Kim WY, Kim TJ, Lee JH et al (2008) Altered MicroRNA expression in cervical carcinomas. Clin Cancer Res 14(9):2535–2542

    CAS  PubMed  Google Scholar 

  • Li T, Li D, Sha J, Sun P, Huang Y (2009) MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun 383(3):280–285

    CAS  PubMed  Google Scholar 

  • Li J, Zhang Y, Zhao J, Kong F, Chen Y (2011a) Overexpression of miR-22 reverses paclitaxel-induced chemoresistance through activation of PTEN signaling in p53-mutated colon cancer cells. Mol Cell Biochem 357(1–2):31–38

    CAS  PubMed  Google Scholar 

  • Li X, Lin R, Li J (2011b) Epigenetic silencing of microRNA-375 regulates PDK1 expression in esophageal cancer. Dig Dis Sci 56(10):2849–2856

    CAS  PubMed  Google Scholar 

  • Lin SL, Chiang A, Chang D, Ying SY (2008) Loss of mir-146a function in hormone-refractory prostate cancer. RNA 14(3):417–424

    CAS  PubMed  Google Scholar 

  • Liu M, Tang Q, Qiu M, Lang N, Li M, Zheng Y et al (2011) miR-21 targets the tumor suppressor RhoB and regulates proliferation, invasion and apoptosis in colorectal cancer cells. FEBS Lett 585(19):2998–3005

    CAS  PubMed  Google Scholar 

  • Liu R, Liao J, Yang M, Sheng J, Yang H, Wang Y et al (2012) The cluster of miR-143 and miR-145 affects the risk for esophageal squamous cell carcinoma through co-regulating fascin homolog 1. PLoS One 7(3):e33987

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu H, Du L, Wen Z, Yang Y, Li J, Wang L et al (2013) Up-regulation of miR-182 expression in colorectal cancer tissues and its prognostic value. Int J Colorectal Dis 28(5):697–703

    PubMed  Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

    PubMed Central  PubMed  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838

    CAS  PubMed  Google Scholar 

  • Lu Q, Lu C, Zhou GP, Zhang W, Xiao H, Wang XR (2010) MicroRNA-221 silencing predisposed human bladder cancer cells to undergo apoptosis induced by TRAIL. Urol Oncol 28(6):635–641

    CAS  PubMed  Google Scholar 

  • Lui WO, Pourmand N, Patterson BK, Fire A (2007) Patterns of known and novel small RNAs in human cervical cancer. Cancer Res 67(13):6031–6043

    CAS  PubMed  Google Scholar 

  • Luo X, Burwinkel B, Tao S, Brenner H (2011) MicroRNA signatures: novel biomarker for colorectal cancer? Cancer Epidemiol Biomarkers Prev 20(7):1272–1286

    CAS  PubMed  Google Scholar 

  • Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449(7163):682–688

    CAS  PubMed  Google Scholar 

  • Ma K, He Y, Zhang H, Fei Q, Niu D, Wang D et al (2012) DNA methylation-regulated miR-193a-3p dictates resistance of hepatocellular carcinoma to 5-fluorouracil via repression of SRSF2 expression. J Biol Chem 287(8):5639–5649

    CAS  PubMed  Google Scholar 

  • Majid S, Dar AA, Saini S, Shahryari V, Arora S, Zaman MS et al (2012) MicroRNA-1280 inhibits invasion and metastasis by targeting ROCK1 in bladder cancer. PLoS One 7(10):e46743

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez I, Gardiner AS, Board KF, Monzon FA, Edwards RP, Khan SA (2008) Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells. Oncogene 27(18):2575–2582

    CAS  PubMed Central  PubMed  Google Scholar 

  • Medina PP, Nolde M, Slack FJ (2010) OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467(7311):86–90

    CAS  PubMed  Google Scholar 

  • Melar-New M, Laimins LA (2010) Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins. J Virol 84(10):5212–5221

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mendell JT, Olson EN (2012) MicroRNAs in stress signaling and human disease. Cell 148(6):1172–1187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133(2):647–658

    CAS  PubMed  Google Scholar 

  • Mercatelli N, Coppola V, Bonci D, Miele F, Costantini A, Guadagnoli M et al (2008) The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS One 3(12):e4029

    PubMed Central  PubMed  Google Scholar 

  • Michael MZ, O’Connor SM, van Holst Pellekaan NG, Young GP, James RJ (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1(12):882–891

    CAS  PubMed  Google Scholar 

  • Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL et al (2008) MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem 283(44):29897–29903

    CAS  PubMed  Google Scholar 

  • Mukherji S, Ebert MS, Zheng GX, Tsang JS, Sharp PA, van Oudenaarden A (2011) MicroRNAs can generate thresholds in target gene expression. Nat Genet 43(9):854–859

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T et al (2006) Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25(17):2537–2545

    CAS  PubMed  Google Scholar 

  • Musumeci M, Coppola V, Addario A, Patrizii M, Maugeri-Saccà M, Memeo L et al (2011) Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene 30(41):4231–4242

    CAS  PubMed  Google Scholar 

  • Nagel R, le Sage C, Diosdado B, van der Waal M, Oude Vrielink JA, Bolijn A, Meijer GA, Agami R (2008) Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res 68(14):5795–5802

    CAS  PubMed  Google Scholar 

  • Ni Y, Meng L, Wang L, Dong W, Shen H, Wang G et al (2013) MicroRNA-143 functions as a tumor suppressor in human esophageal squamous cell carcinoma. Gene 517(2):197–204

    CAS  PubMed  Google Scholar 

  • Nishida N, Yamashita S, Mimori K, Sudo T, Tanaka F, Shibata K et al (2012) MicroRNA-10b is a prognostic indicator in colorectal cancer and confers resistance to the chemotherapeutic agent 5-fluorouracil in colorectal cancer cells. Ann Surg Oncol 19(9):3065–3071

    PubMed  Google Scholar 

  • Nishimura J, Handa R, Yamamoto H, Tanaka F, Shibata K, Mimori K et al (2012) microRNA-181a is associated with poor prognosis of colorectal cancer. Oncol Rep 28(6):2221–2226

    CAS  PubMed  Google Scholar 

  • Noguchi S, Yasui Y, Iwasaki J, Kumazaki M, Yamada N, Naito S et al (2013) Replacement treatment with microRNA-143 and -145 induces synergistic inhibition of the growth of human bladder cancer cells by regulating PI3K/Akt and MAPK signaling pathways. Cancer Lett 328(2):353–361

    CAS  PubMed  Google Scholar 

  • Nuovo GJ, Wu X, Volinia S, Yan F, Di Leva G, Chin N et al (2010) Strong inverse correlation between microRNA-125b and human papillomavirus DNA in productive infection. Diagn Mol Pathol 19(3):135–143

    CAS  PubMed  Google Scholar 

  • Olaru AV, Yamanaka S, Vazquez C, Mori Y, Cheng Y, Abraham JM et al (2013) MicroRNA-224 negatively regulates p21 expression during late neoplastic progression in inflammatory bowel disease. Inflamm Bowel Dis 19(3):471–480

    PubMed  Google Scholar 

  • Pang Y, Young CY, Yuan H (2010) MicroRNAs and prostate cancer. Acta Biochim Biophys Sin (Shanghai) 42(6):363–369

    CAS  Google Scholar 

  • Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22(7):894–907

    CAS  PubMed  Google Scholar 

  • Park JK, Lee EJ, Esau C, Schmittgen TD (2009) Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas 38(7):e190–e199

    CAS  PubMed  Google Scholar 

  • Park JK, Kogure T, Nuovo GJ, Jiang J, He L, Kim JH et al (2011) miR-221 silencing blocks hepatocellular carcinoma and promotes survival. Cancer Res 71(24):7608–7616

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parkin DM, Bray F (2006) Chapter 2: the burden of HPV-related cancers. Vaccine 24:S3/11–25

    Google Scholar 

  • Pierson J, Hostager B, Fan R, Vibhakar R (2008) Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. J Neurooncol 90(1):1–7

    CAS  PubMed  Google Scholar 

  • Piperi C, Vlastos F, Farmaki E, Martinet N, Papavassiliou AG (2008) Epigenetic effects of lung cancer predisposing factors impact on clinical diagnosis and prognosis. J Cell Mol Med 12(5A):1495–1501

    CAS  PubMed  Google Scholar 

  • Prat A, Perou CM (2011) Deconstructing the molecular portraits of breast cancer. Mol Oncol 5(1):5–23

    CAS  PubMed  Google Scholar 

  • Qi L, Bart J, Tan LP, Platteel I, Sluis T, Huitema S et al (2009) Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer 9:163

    PubMed Central  PubMed  Google Scholar 

  • Rao X, Di Leva G, Li M, Fang F, Devlin C, Hartman-Frey C et al (2011) MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene 30(9):1082–1097

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N et al (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26(5):731–743

    CAS  PubMed  Google Scholar 

  • Ribas J, Ni X, Haffner M, Wentzel EA, Salmasi AH, Chowdhury WH et al (2009) miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res 69(18):7165–7169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S et al (2006) MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol 24(29):4677–4684

    CAS  PubMed  Google Scholar 

  • Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S et al (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci U S A 106(9):3207–3212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sachdeva M, Wu H, Ru P, Hwang L, Trieu V, Mo YY (2011) MicroRNA-101-mediated Akt activation and estrogen-independent growth. Oncogene 30(7):822–831

    CAS  PubMed  Google Scholar 

  • Sato F, Hatano E, Kitamura K, Myomoto A, Fujiwara T, Takizawa S et al (2011) MicroRNA profile predicts recurrence after resection in patients with hepatocellular carcinoma within the Milan Criteria. PLoS One 6(1):e16435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sayed D, Rane S, Lypowy J, He M, Chen IY, Vashistha H et al (2008) MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Mol Biol Cell 19(8):3272–3282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63(6):1129–1136

    CAS  PubMed  Google Scholar 

  • Selcuklu SD, Donoghue MT, Spillane C (2009) miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans 37(Pt 4):918–925

    CAS  PubMed  Google Scholar 

  • Shi XB, Xue L, Yang J, Ma AH, Zhao J, Xu M et al (2007) An androgen regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci U S A 104(50):1998–19988

    Google Scholar 

  • Shi L, Chen J, Yang J, Pan T, Zhang S, Wang Z (2010) MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Res 1352(13):255–264

    CAS  PubMed  Google Scholar 

  • Shibata K, Tanaka S, Shiraishi T, Kitano S, Mori M (1999) G-protein g7 is down-regulated in cancers and associated with p 27kip1-induced growth arrest. Cancer Res 59(5):1096–1101

    CAS  PubMed  Google Scholar 

  • Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D et al (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138(3):592–603

    CAS  PubMed Central  PubMed  Google Scholar 

  • Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY (2007) miR-21-mediated tumor growth. Oncogene 26(19):2799–2803

    CAS  PubMed  Google Scholar 

  • Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61(4):212–236

    PubMed  Google Scholar 

  • Sikand K, Slaibi JE, Singh R, Slane SD, Shukla GC (2010) miR 488* inhibits androgen receptor expression in prostate carcinoma cells. Int J Cancer 129(4):810–819

    Google Scholar 

  • Song B, Wang Y, Xi Y, Kudo K, Bruheim S, Botchkina GI et al (2009) Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene 28(46):4065–4074

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun T, Wang Q, Balk S, Brown M, Lee GS, Kantoff P (2009) The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Res 69(8):3356–3363

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tao J, Lu Q, Wu D, Li P, Xu B, Qing W et al (2011) microRNA-21 modulates cell proliferation and sensitivity to doxorubicin in bladder cancer cells. Oncol Rep 25(6):1721–1729

    CAS  PubMed  Google Scholar 

  • Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451(7175):147–152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Torrisani J, Bournet B, du Rieu MC, Bouisson M, Souque A, Escourrou J et al (2009) let-7 MicroRNA transfer in pancreatic cancer-derived cells inhibits in vitro cell proliferation but fails to alter tumor progression. Hum Gene Ther 20(8):831–844

    CAS  PubMed  Google Scholar 

  • Uziel T, Karginov FV, Xie S, Parker JS, Wang YD, Gajjar A et al (2009) The miR-17 92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci U S A 106(8):2812–2817

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valeri N, Gasparini P, Braconi C, Paone A, Lovat F, Fabbri M et al (2010) MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc Natl Acad Sci U S A 107(49):21098–21103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B et al (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322(5908):1695–1699

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vinall RL, Ripoll AZ, Wang S, Pan CX, deVere White RW (2012) MiR-34a chemosensitizes bladder cancer cells to cisplatin treatment regardless of p53-Rb pathway status. Int J Cancer 130(11):2526–2538

    CAS  PubMed  Google Scholar 

  • Volanis D, Kadiyska T, Galanis A, Delakas D, Logotheti S, Zoumpourlis V (2010) Environmental factors and genetic susceptibility promote urinary bladder cancer. Toxicol Lett 193(2):131–137

    CAS  PubMed  Google Scholar 

  • Volinia S, Croce CM (2013) Prognostic microRNA/mRNA signature from the integrated analysis of patients with invasive breast cancer. Proc Natl Acad Sci U S A 110(18):7413–7417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103(7):2257–2261

    CAS  PubMed Central  PubMed  Google Scholar 

  • Volinia S, Galasso M, Sana ME, Wise TF, Palatini J, Huebner K et al (2012) Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc Natl Acad Sci U S A 109(8):3024–3029

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV et al (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189(1):12–19

    CAS  PubMed  Google Scholar 

  • Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C et al (2008) Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One 3(7):e2557

    PubMed Central  PubMed  Google Scholar 

  • Wang J, Chen J, Chang P, LeBlanc A, Li D, Abbruzzesse JL et al (2009a) MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res (Phila) 2(9):807–813

    CAS  Google Scholar 

  • Wang P, Zou F, Zhang X, Li H, Dulak A, Tomko RJ Jr et al (2009b) microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res 69(20):8157–8165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weiss FU, Marques IJ, Woltering JM, Vlecken DH, Aghdassi A, Partecke LI et al (2009) Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology 137(6):2136–2145

    CAS  PubMed  Google Scholar 

  • Wong CM, Wong CC, Lee JM, Fan DN, Au SL, Ng IO (2012) Sequential alterations of microRNA expression in hepatocellular carcinoma development and venous metastasis. Hepatology 55(5):1453–1461

    CAS  PubMed  Google Scholar 

  • Xiong B, Cheng Y, Ma L, Zhang C (2013) MiR-21 regulates biological behavior through the PTEN/PI-3 K/Akt signaling pathway in human colorectal cancer cells. Int J Oncol 42(1):219–228

    CAS  PubMed  Google Scholar 

  • Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137(4):647–658

    CAS  PubMed  Google Scholar 

  • Xu B, Niu X, Zhang X, Tao J, Wu D, Wang Z et al (2011) miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem 350(1–2):207–213

    CAS  PubMed  Google Scholar 

  • Xu K, Liang X, Shen K, Sun L, Cui D, Zhao Y et al (2012a) MiR-222 modulates multidrug resistance in human colorectal carcinoma by down-regulating ADAM-17. Exp Cell Res 318(17):2168–2177

    CAS  PubMed  Google Scholar 

  • Xu N, Shen C, Luo Y, Xia L, Xue F, Xia Q et al (2012b) Upregulated miR-130a increases drug resistance by regulating RUNX3 and Wnt signaling in cisplatin-treated HCC cell. Biochem Biophys Res Commun 425(2):468–472

    CAS  PubMed  Google Scholar 

  • Xu C, Zeng Q, Xu W, Jiao L, Chen Y, Zhang Z et al (2013) miRNA-100 inhibits human bladder urothelial carcinogenesis by directly targeting mTOR. Mol Cancer Ther 12(2):207–219

    CAS  PubMed  Google Scholar 

  • Yao Q, Xu H, Zhang QQ, Zhou H, Qu LH (2009) MicroRNA-21 promotes cell proliferation and downregulates the expression of programmed cell death 4 (PDCD4) in HeLa cervical carcinoma cells. Biochem Biophys Res Commun 388(3):539–542

    CAS  PubMed  Google Scholar 

  • Yin Y, Yan ZP, Lu NN, Xu Q, He J, Qian X et al (2013) Downregulation of miR-145 associated with cancer progression and VEGF transcriptional activation by targeting N-RAS and IRS1. Biochim Biophys Acta 1829(2):239–247

    CAS  PubMed  Google Scholar 

  • Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C et al (2007) Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109–1123

    CAS  PubMed  Google Scholar 

  • Yugawa T, Kiyono T (2009) Molecular mechanisms of cervical carcinogenesis by high-risk human papillomaviruses: novel functions of E6 and E7 oncoproteins. Rev Med Virol 19(2):97–113

    CAS  PubMed  Google Scholar 

  • Zhang C, Kang C, You Y, Pu P, Yang W, Zhao P et al (2009a) Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27(kip1) in vitro and in vivo. Int J Oncol 34(6):1653–1660

    CAS  PubMed  Google Scholar 

  • Zhang Y, Chao T, Li R, Liu W, Chen Y, Yan X et al (2009b) MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J Mol Med 87(1):43–51

    CAS  PubMed  Google Scholar 

  • Zhang CZ, Zhang JX, Zhang AL, Shi ZD, Han L, Jia ZF et al (2010a) MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol Cancer 9:229

    PubMed Central  PubMed  Google Scholar 

  • Zhang J, Han L, Ge Y, Zhou X, Zhang A, Zhang C et al (2010b) miR-221/222 promote malignant progression of glioma through activation of the Akt pathway. Int J Oncol 36(4):913–920

    CAS  PubMed  Google Scholar 

  • Zhang GJ, Xiao HX, Tian HP, Liu ZL, Xia SS, Zhou T (2013) Upregulation of microRNA-155 promotes the migration and invasion of colorectal cancer cells through the regulation of claudin-1 expression. Int J Mol Med 31(6):1375–1380

    CAS  PubMed  Google Scholar 

  • Zhao JJ, Lin J, Yang H, Kong W, He L, Ma X et al (2008) MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem 283(45):31079–31086

    CAS  PubMed  Google Scholar 

  • Zheng C, Yinghao S, Li J (2012) MiR-221 expression affects invasion potential of human prostate carcinoma cell lines by targeting DVL2. Med Oncol 29(2):815–822

    CAS  PubMed  Google Scholar 

  • Zhi F, Chen X, Wang S, Xia X, Shi Y, Guan W et al (2010) The use of hsa-miR-21, hsa-miR-181b and hsa-miR-106a as prognostic indicators of astrocytoma. Eur J Cancer 46(9):1640–1649

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Gianpiero Di Leva and Michela Garfolao researched data for the article and contributed to the writing, reviewing and editing of the manuscript. This work was supported in part by the Kimmel Cancer Award 2011 to Michela Garofalo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Garofalo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Di Leva, G., Garofalo, M. (2014). MicroRNAs in Solid Tumors. In: Babashah, S. (eds) MicroRNAs: Key Regulators of Oncogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-03725-7_5

Download citation

Publish with us

Policies and ethics