Skip to main content

The Biological Roles of MicroRNAs in Cancer Stem Cells

  • Chapter
  • First Online:
MicroRNAs: Key Regulators of Oncogenesis

Abstract

The concept of cancer stem cells (CSCs) has great clinical implications because small sub-populations of CSCs have been identified in many different tumors that are associated with poor clinical outcome. Sufficient evidence supports central functions of CSCs in tumorigenesis, due to its distinct high potentials of self-renewal, pluripotent differentiation and apoptosis-resistance, contributing to tumor aggressiveness. Therefore, inhibiting/eliminating CSCs will provide a new effective therapeutic approach for the treatment of aggressive tumors. However, the mechanistic roles of CSCs in tumorigenesis are not well understood. MicroRNAs (miRNAs) have been discovered to act as key regulators of gene expression in tumorigenesis. Aberrant expression of miRNAs has been discovered to be related to worse clinical outcome of many different tumors. Evidence shows that these tumor-related miRNAs have key functions in the regulation of cell cycle/proliferation, migration/invasion, chemo-radiation resistance, and metastasis. Moreover, miRNAs may also exert important functions in modulating CSC characteristics; however, its detailed mechanism(s) has not been fully elucidated. Here, we will summarize the potential role of CSC-related miRNAs in CSC function, and will further define the role of genistein in targeting these CSC-related miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adlercreutz H, Honjo H, Higashi A, Fotsis T, Hamalainen E, Hasegawa T et al (1991) Urinary excretion of lignans and isoflavonoid phytoestrogens in Japanese men and women consuming a traditional Japanese diet. Am J Clin Nutr 54(6):1093–1100

    CAS  PubMed  Google Scholar 

  • Adlercreutz H, Markkanen H, Watanabe S (1993) Plasma concentrations of phyto-oestrogens in Japanese men. Lancet 342(8881):1209–1210

    CAS  PubMed  Google Scholar 

  • Alajez NM, Shi W, Hui AB, Bruce J, Lenarduzzi M, Ito E et al (2010) Enhancer of Zeste homolog 2 (EZH2) is overexpressed in recurrent nasopharyngeal carcinoma and is regulated by miR-26a, miR-101, and miR-98. Cell Death Dis 1:e85

    CAS  PubMed Central  PubMed  Google Scholar 

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, Schaffert JM et al (2010) Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res 70(9):3606–3617

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ali S, Banerjee S, Logna F, Bao B, Philip PA, Korc M et al (2011) Inactivation of Ink4a/Arf leads to deregulated expression of miRNAs in K-Ras transgenic mouse model of pancreatic cancer. J Cell Physiol 227(10):3373–3380

    Google Scholar 

  • Aranha MM, Santos DM, Sola S, Steer CJ, Rodrigues CM (2011) miR-34a regulates mouse neural stem cell differentiation. PLoS One 6(8):e21396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Au SL, Wong CC, Lee JM, Fan DN, Tsang FH, Ng IO et al (2012) Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis. Hepatology 56(2):622–631

    CAS  PubMed  Google Scholar 

  • Avgeris M, Stravodimos K, Fragoulis EG, Scorilas A (2013) The loss of the tumour-suppressor miR-145 results in the shorter disease-free survival of prostate cancer patients. Br J Cancer 108(12):2573–2581

    CAS  PubMed  Google Scholar 

  • Babashah S, Soleimani M (2011) The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis. Eur J Cancer 47(8):1127–1137

    CAS  PubMed  Google Scholar 

  • Banerjee R, Mani RS, Russo N, Scanlon CS, Tsodikov A, Jing X et al (2011) The tumor suppressor gene rap1GAP is silenced by miR-101-mediated EZH2 overexpression in invasive squamous cell carcinoma. Oncogene 30(42):4339–4349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760

    CAS  PubMed  Google Scholar 

  • Bao B, Wang Z, Ali S, Kong D, Banerjee S, Ahmad A et al (2011a) Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J Cell Biochem 112(9):2296–2306

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bao B, Wang Z, Ali S, Kong D, Li Y, Ahmad A et al (2011b) Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett 307(1):26–36

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bao B, Ahmad A, Kong D, Ali S, Azmi AS, Li Y et al (2012a) Hypoxia induced aggressiveness of prostate cancer cells is linked with deregulated expression of VEGF, IL-6 and miRNAs that are attenuated by CDF. PLoS One 7(8):e43726

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bao B, Ahmad A, Li Y, Azmi AS, Ali S, Banerjee S et al (2012b) Targeting CSCs within the tumor microenvironment for cancer therapy: a potential role of mesenchymal stem cells. Expert Opin Ther Targets 16(10):1041–1054

    CAS  PubMed  Google Scholar 

  • Bao B, Ali S, Ahmad A, Azmi AS, Li Y, Banerjee S et al (2012c) Hypoxia-induced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment. PLoS One 7(12):e50165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bao B, Ali S, Banerjee S, Wang Z, Logna F, Azmi AS et al (2012d) Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res 72(1):335–345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bao B, Wang Z, Ali S, Ahmad A, Azmi AS, Sarkar SH et al (2012e) Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prev Res (Phila) 5(3):355–364

    CAS  Google Scholar 

  • Bao L, Yan Y, Xu C, Ji W, Shen S, Xu G et al (2013) MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways. Cancer Lett 337(2):226–236

    CAS  PubMed  Google Scholar 

  • Bhatia M, Bonnet D, Kapp U, Wang JC, Murdoch B, Dick JE (1997) Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. J Exp Med 186(4):619–624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhaumik D, Scott GK, Schokrpur S, Patil CK, Campisi J, Benz CC (2008) Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene 27(42):5643–5647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bitarte N, Bandres E, Boni V, Zarate R, Rodriguez J, Gonzalez-Huarriz M et al (2011) MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells. Stem Cells 29(11):1661–1671

    CAS  PubMed  Google Scholar 

  • Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737

    CAS  PubMed  Google Scholar 

  • Brabletz S, Brabletz T (2010) The ZEB/miR-200 feedback loop–a motor of cellular plasticity in development and cancer? EMBO Rep 11(9):670–677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K (2003) EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22(20):5323–5335

    CAS  PubMed  Google Scholar 

  • Cai ZG, Zhang SM, Zhang H, Zhou YY, Wu HB, Xu XP (2013) Aberrant expression of microRNAs involved in epithelial-mesenchymal transition of HT-29 cell line. Cell Biol Int 37(7):669–674

    CAS  PubMed  Google Scholar 

  • Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H et al (2008) hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 14(5):1340–1348

    CAS  PubMed  Google Scholar 

  • Cao P, Deng Z, Wan M, Huang W, Cramer SD, Xu J et al (2010) MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1alpha/HIF-1beta. Mol Cancer 9:108

    PubMed Central  PubMed  Google Scholar 

  • Chan SY, Loscalzo J (2010) MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle 9(6):1072–1083

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chang CJ, Hung MC (2012) The role of EZH2 in tumour progression. Br J Cancer 106(2):243–247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26(5):745–752

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chang CJ, Hsu CC, Chang CH, Tsai LL, Chang YC, Lu SW et al (2011a) Let-7d functions as novel regulator of epithelial-mesenchymal transition and chemoresistant property in oral cancer. Oncol Rep 26(4):1003–1010

    CAS  PubMed  Google Scholar 

  • Chang SJ, Weng SL, Hsieh JY, Wang TY, Chang MD, Wang HW (2011b) MicroRNA-34a modulates genes involved in cellular motility and oxidative phosphorylation in neural precursors derived from human umbilical cord mesenchymal stem cells. BMC Med Genomics 4:65

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Y, Xie D, Yin LW, Man CC, Yao H, Chan CY et al (2010) RNAi targeting EZH2 inhibits tumor growth and liver metastasis of pancreatic cancer in vivo. Cancer Lett 297(1):109–116

    CAS  PubMed  Google Scholar 

  • Cho HM, Jeon HS, Lee SY, Jeong KJ, Park SY, Lee HY et al (2011) MicroRNA-101 inhibits lung cancer invasion through the regulation of enhancer of zeste homolog 2. Exp Ther Med 2(5):963–967

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chou RH, Yu YL, Hung MC (2011) The roles of EZH2 in cell lineage commitment. Am J Transl Res 3(3):243–250

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crea F, Fornaro L, Bocci G, Sun L, Farrar WL, Falcone A et al (2012) EZH2 inhibition: targeting the crossroad of tumor invasion and angiogenesis. Cancer Metastasis Rev 31(3–4):753–761

    CAS  PubMed  Google Scholar 

  • Creighton CJ, Chang JC, Rosen JM (2010) Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. J Mammary Gland Biol Neoplasia 15(2):253–260

    PubMed  Google Scholar 

  • Crosby ME, Kulshreshtha R, Ivan M, Glazer PM (2009) MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res 69(3):1221–1229

    CAS  PubMed Central  PubMed  Google Scholar 

  • D’Andrea FP (2012) Intrinsic radiation resistance of mesenchymal cancer stem cells and implications for treatment response in a murine sarcoma model. Dan Med J 59(2):B4388

    PubMed  Google Scholar 

  • D’Andrea FP, Safwat A, Kassem M, Gautier L, Overgaard J, Horsman MR (2011) Cancer stem cell overexpression of nicotinamide N-methyltransferase enhances cellular radiation resistance. Radiother Oncol 99(3):373–378

    PubMed  Google Scholar 

  • De VC, Riggi N, Suva ML, Janiszewska M, Horlbeck J, Baumer K et al (2011) Let-7a is a direct EWS-FLI-1 target implicated in Ewing’s sarcoma development. PLoS One 6(8):e23592

    Google Scholar 

  • DeSano JT, Xu L (2009) MicroRNA regulation of cancer stem cells and therapeutic implications. AAPS J 11(4):682–692

    CAS  PubMed  Google Scholar 

  • Devlin C, Greco S, Martelli F, Ivan M (2011) miR-210: more than a silent player in hypoxia. IUBMB Life 63(2):94–100

    CAS  PubMed  Google Scholar 

  • Dillhoff M, Liu J, Frankel W, Croce C, Bloomston M (2008) MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J Gastrointest Surg 12(12):2171–2176

    PubMed  Google Scholar 

  • Doberstein K, Steinmeyer N, Hartmetz AK, Eberhardt W, Mittelbronn M, Harter PN et al (2013) MicroRNA-145 targets the metalloprotease ADAM17 and is suppressed in renal cell carcinoma patients. Neoplasia 15(2):218–230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dylla SJ, Beviglia L, Park IK, Chartier C, Raval J, Ngan L et al (2008) Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One 3(6):e2428

    PubMed Central  PubMed  Google Scholar 

  • Dynoodt P, Speeckaert R, De WO, Chevolet I, Brochez L, Lambert J et al (2013) miR-145 overexpression suppresses the migration and invasion of metastatic melanoma cells. Int J Oncol 42(4):1443–1451

    CAS  PubMed  Google Scholar 

  • Favaro E, Ramachandran A, McCormick R, Gee H, Blancher C, Crosby M et al (2010) MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU. PLoS One 5(4):e10345

    PubMed Central  PubMed  Google Scholar 

  • Friedman JM, Liang G, Liu CC, Wolff EM, Tsai YC, Ye W et al (2009) The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res 69(6):2623–2629

    CAS  PubMed  Google Scholar 

  • Fujii S, Ito K, Ito Y, Ochiai A (2008) Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. J Biol Chem 283(25):17324–17332

    CAS  PubMed  Google Scholar 

  • Garzon R, Pichiorri F, Palumbo T, Visentini M, Aqeilan R, Cimmino A et al (2007) MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene 26(28):4148–4157

    CAS  PubMed  Google Scholar 

  • Gee HE, Camps C, Buffa FM, Patiar S, Winter SC, Betts G et al (2010) hsa-mir-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer. Cancer 116(9):2148–2158

    PubMed  Google Scholar 

  • Ghisolfi L, Keates AC, Hu X, Lee DK, Li CJ (2012) Ionizing radiation induces stemness in cancer cells. PLoS One 7(8):e43628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G et al (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68(22):9125–9130

    CAS  PubMed  Google Scholar 

  • Golestaneh AF, Atashi A, Langroudi L, Shafiee A, Ghaemi N, Soleimani M (2012) miRNAs expressed differently in cancer stem cells and cancer cells of human gastric cancer cell line MKN-45. Cell Biochem Funct 30(5):411–418

    CAS  PubMed  Google Scholar 

  • Guo Y, Li S, Qu J, Wang S, Dang Y, Fan J et al (2011) MiR-34a inhibits lymphatic metastasis potential of mouse hepatoma cells. Mol Cell Biochem 354(1–2):275–282

    CAS  PubMed  Google Scholar 

  • Han M, Wang Y, Liu M, Bi X, Bao J, Zeng N et al (2012) MiR-21 regulates epithelial-mesenchymal transition phenotype and hypoxia-inducible factor-1alpha expression in third-sphere forming breast cancer stem cell-like cells. Cancer Sci 103(6):1058–1064

    CAS  PubMed  Google Scholar 

  • Hao Y, Gu X, Zhao Y, Greene S, Sha W, Smoot DT et al (2011) Enforced expression of miR-101 inhibits prostate cancer cell growth by modulating the COX-2 pathway in vivo. Cancer Prev Res (Phila) 4(7):1073–1083

    CAS  Google Scholar 

  • He XP, Shao Y, Li XL, Xu W, Chen GS, Sun HH et al (2012) Downregulation of miR-101 in gastric cancer correlates with cyclooxygenase-2 overexpression and tumor growth. FEBS J 279(22):4201–4212

    CAS  PubMed  Google Scholar 

  • Hebert JR, Hurley TG, Olendzki BC, Teas J, Ma Y, Hampl JS (1998) Nutritional and socioeconomic factors in relation to prostate cancer mortality: a cross-national study. J Natl Cancer Inst 90(21):1637–1647

    CAS  PubMed  Google Scholar 

  • Hebert C, Norris K, Scheper MA, Nikitakis N, Sauk JJ (2007) High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Mol Cancer 6:5

    PubMed Central  PubMed  Google Scholar 

  • Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3):313–323

    CAS  PubMed  Google Scholar 

  • Hermann PC, Bhaskar S, Cioffi M, Heeschen C (2010) Cancer stem cells in solid tumors. Semin Cancer Biol 20(2):77–84

    CAS  PubMed  Google Scholar 

  • Ho AS, Huang X, Cao H, Christman-Skieller C, Bennewith K, Le QT et al (2010) Circulating miR-210 as a novel hypoxia marker in pancreatic cancer. Transl Oncol 3(2):109–113

    PubMed Central  PubMed  Google Scholar 

  • Hu Z, Lin Y, Chen H, Mao Y, Wu J, Zhu Y et al (2013) MicroRNA-101 suppresses motility of bladder cancer cells by targeting c-Met. Biochem Biophys Res Commun 435(1):82–87

    CAS  PubMed  Google Scholar 

  • Hua S, Xiaotao X, Renhua G, Yongmei Y, Lianke L, Wen G et al (2012) Reduced miR-31 and let-7 maintain the balance between differentiation and quiescence in lung cancer stem-like side population cells. Biomed Pharmacother 66(2):89–97

    CAS  PubMed  Google Scholar 

  • Huang Y (2012) A mirror of two faces: Lin28 as a master regulator of both miRNA and mRNA. Wiley Interdiscip Rev RNA 3(4):483–494

    CAS  PubMed  Google Scholar 

  • Huang X, Ding L, Bennewith KL, Tong RT, Welford SM, Ang KK et al (2009) Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell 35(6):856–867

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K (2010) Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 39(5):761–772

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ischenko I, Seeliger H, Kleespies A, Angele MK, Eichhorn ME, Jauch KW et al (2010) Pancreatic cancer stem cells: new understanding of tumorigenesis, clinical implications. Langenbecks Arch Surg 395(1):1–10

    PubMed  Google Scholar 

  • Ivan M, Harris AL, Martelli F, Kulshreshtha R (2008) Hypoxia response and microRNAs: no longer two separate worlds. J Cell Mol Med 12(5A):1426–1431

    CAS  PubMed  Google Scholar 

  • Jacobsen BK, Knutsen SF, Fraser GE (1998) Does high soy milk intake reduce prostate cancer incidence? The Adventist Health Study (United States). Cancer Causes Control 9(6):553–557

    CAS  PubMed  Google Scholar 

  • Kao CJ, Martiniez A, Shi XB, Yang J, Evans CP, Dobi A et al (2013) miR-30 as a tumor suppressor connects EGF/Src signal to ERG and EMT. Oncogene. doi: 10.1038/onc.2013.200. [Epub ahead of print]

  • Kent OA, Mullendore M, Wentzel EA, Lopez-Romero P, Tan AC, Alvarez H et al (2009) A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells. Cancer Biol Ther 8(21):2013–2024

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klonisch T, Wiechec E, Hombach-Klonisch S, Ande SR, Wesselborg S, Schulze-Osthoff K et al (2008) Cancer stem cell markers in common cancers – therapeutic implications. Trends Mol Med 14(10):450–460

    CAS  PubMed  Google Scholar 

  • Kojima M, Ishii G, Atsumi N, Fujii S, Saito N, Ochiai A (2008) Immunohistochemical detection of CD133 expression in colorectal cancer: a clinicopathological study. Cancer Sci 99(8):1578–1583

    CAS  PubMed  Google Scholar 

  • Kong D, Li Y, Wang Z, Banerjee S, Ahmad A, Kim HR et al (2009) miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells 27(8):1712–1721

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kong D, Banerjee S, Ahmad A, Li Y, Wang Z, Sethi S et al (2010) Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One 5(8):e12445

    PubMed Central  PubMed  Google Scholar 

  • Kong D, Heath E, Chen W, Cher M, Powell I, Heilbrun L et al (2012a) Epigenetic silencing of miR-34a in human prostate cancer cells and tumor tissue specimens can be reversed by BR-DIM treatment. Am J Transl Res 4(1):14–23

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kong D, Heath E, Chen W, Cher ML, Powell I, Heilbrun L et al (2012b) Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS One 7(3):e33729

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuang HB, Miao CL, Guo WX, Peng S, Cao YJ, Duan EK (2009) Dickkopf-1 enhances migration of HEK293 cell by beta-catenin/E-cadherin degradation. Front Biosci 14:2212–2220

    CAS  Google Scholar 

  • Kulshreshtha R, Ferracin M, Negrini M, Calin GA, Davuluri RV, Ivan M (2007) Regulation of microRNA expression: the hypoxic component. Cell Cycle 6(12):1426–1431

    CAS  PubMed  Google Scholar 

  • Leal JA, Lleonart ME (2012) MicroRNAs and cancer stem cells: therapeutic approaches and future perspectives. Cancer Lett 338(1):174–183

    PubMed  Google Scholar 

  • Lee CJ, Dosch J, Simeone DM (2008) Pancreatic cancer stem cells. J Clin Oncol 26(17):2806–2812

    PubMed  Google Scholar 

  • Lee HE, Kim JH, Kim YJ, Choi SY, Kim SW, Kang E et al (2011) An increase in cancer stem cell population after primary systemic therapy is a poor prognostic factor in breast cancer. Br J Cancer 104(11):1730–1738

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, VandenBoom TG, Kong D, Wang Z, Ali S, Philip PA et al (2009) Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 69(16):6704–6712

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Liang S, Yu H, Zhang J, Ma D, Lu X (2010a) An inhibitory effect of miR-22 on cell migration and invasion in ovarian cancer. Gynecol Oncol 119(3):543–548

    CAS  PubMed  Google Scholar 

  • Li Y, VandenBoom TG, Wang Z, Kong D, Ali S, Philip PA et al (2010b) miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res 70(4):1486–1495

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Zhang Y, Zhao J, Kong F, Chen Y (2011a) Overexpression of miR-22 reverses paclitaxel-induced chemoresistance through activation of PTEN signaling in p53-mutated colon cancer cells. Mol Cell Biochem 357(1–2):31–38

    CAS  PubMed  Google Scholar 

  • Li X, Sanda T, Look AT, Novina CD, von Boehmer H (2011b) Repression of tumor suppressor miR-451 is essential for NOTCH1-induced oncogenesis in T-ALL. J Exp Med 208(4):663–675

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li N, Zhong X, Lin X, Guo J, Zou L, Tanyi JL et al (2012) Lin-28 homologue A (LIN28A) promotes cell cycle progression via regulation of cyclin-dependent kinase 2 (CDK2), cyclin D1 (CCND1), and cell division cycle 25 homolog A (CDC25A) expression in cancer. J Biol Chem 287(21):17386–17397

    CAS  PubMed  Google Scholar 

  • Liu C, Tang DG (2011) MicroRNA regulation of cancer stem cells. Cancer Res 71(18):5950–5954

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu M, Sakamaki T, Casimiro MC, Willmarth NE, Quong AA, Ju X et al (2010) The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. Cancer Res 70(24):10464–10473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu C, Luo Y, Liu X, Lu P, Zhao Z (2012) Clinical implications of CD44+/. Cancer Biother Radiopharm 27(5):324–328

    PubMed  Google Scholar 

  • Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Korner H et al (2008) Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7(16):2591–2600

    CAS  PubMed  Google Scholar 

  • Lu J, He ML, Wang L, Chen Y, Liu X, Dong Q et al (2011) MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res 71(1):225–233

    CAS  PubMed  Google Scholar 

  • Lu L, Tang D, Wang L, Huang LQ, Jiang GS, Xiao XY et al (2012) Gambogic acid inhibits TNF-alpha-induced invasion of human prostate cancer PC3 cells in vitro through PI3K/Akt and NF-kappaB signaling pathways. Acta Pharmacol Sin 33(4):531–541

    PubMed  Google Scholar 

  • McCarty MF (2012) Metformin may antagonize Lin28 and/or Lin28B activity, thereby boosting let-7 levels and antagonizing cancer progression. Med Hypotheses 78(2):262–269

    CAS  PubMed  Google Scholar 

  • Mei J, Bachoo R, Zhang CL (2011) MicroRNA-146a inhibits glioma development by targeting Notch1. Mol Cell Biol 31(17):3584–3592

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moriyama T, Ohuchida K, Mizumoto K, Yu J, Sato N, Nabae T et al (2009) MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol Cancer Ther 8(5):1067–1074

    CAS  PubMed  Google Scholar 

  • Nalls D, Tang SN, Rodova M, Srivastava RK, Shankar S (2011) Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS One 6(8):e24099

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nam EJ, Lee M, Yim GW, Kim JH, Kim S, Kim SW et al (2012) MicroRNA profiling of a CD133(+) spheroid-forming subpopulation of the OVCAR3 human ovarian cancer cell line. BMC Med Genomics 5:18

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nie Y, Han BM, Liu XB, Yang JJ, Wang F, Cong XF et al (2011) Identification of MicroRNAs involved in hypoxia- and serum deprivation-induced apoptosis in mesenchymal stem cells. Int J Biol Sci 7(6):762–768

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olson P, Lu J, Zhang H, Shai A, Chun MG, Wang Y et al (2009) MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev 23(18):2152–2165

    CAS  PubMed  Google Scholar 

  • Pandey DP, Picard D (2009) miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor alpha mRNA. Mol Cell Biol 29(13):3783–3790

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pang Y, Young CY, Yuan H (2010) MicroRNAs and prostate cancer. Acta Biochim Biophys Sin (Shanghai) 42(6):363–369

    CAS  Google Scholar 

  • Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and A. Cancer Res 65(14):6207–6219

    CAS  PubMed  Google Scholar 

  • Perera RJ, Ray A (2007) MicroRNAs in the search for understanding human diseases. BioDrugs 21(2):97–104

    CAS  PubMed  Google Scholar 

  • Peruzzi P, Bronisz A, Nowicki MO, Wang Y, Ogawa D, Price R et al (2013) MicroRNA-128 coordinately targets Polycomb Repressor Complexes in glioma stem cells. Neuro Oncol 15(9):1212–1224

    CAS  PubMed  Google Scholar 

  • Peter ME (2009) Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle 8(6):843–852

    CAS  PubMed Central  PubMed  Google Scholar 

  • Puissegur MP, Mazure NM, Bertero T, Pradelli L, Grosso S, Robbe-Sermesant K et al (2011) miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ 18(3):465–478

    CAS  PubMed  Google Scholar 

  • Quero L, Dubois L, Lieuwes NG, Hennequin C, Lambin P (2011) miR-210 as a marker of chronic hypoxia, but not a therapeutic target in prostate cancer. Radiother Oncol 101(1):203–208

    CAS  PubMed  Google Scholar 

  • Redova M, Poprach A, Nekvindova J, Iliev R, Radova L, Lakomy R et al (2012) Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J Transl Med 10:55

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ren D, Wang M, Guo W, Zhao X, Tu X, Huang S et al (2013) Wild-type p53 suppresses the epithelial-mesenchymal transition and stemness in PC-3 prostate cancer cells by modulating miR145. Int J Oncol 42(4):1473–1481

    CAS  PubMed  Google Scholar 

  • Sakurai T, Bilim VN, Ugolkov AV, Yuuki K, Tsukigi M, Motoyama T et al (2012) The enhancer of zeste homolog 2 (EZH2), a potential therapeutic target, is regulated by miR-101 in renal cancer cells. Biochem Biophys Res Commun 422(4):607–614

    CAS  PubMed  Google Scholar 

  • Sarkar FH, Li Y (2009) Harnessing the fruits of nature for the development of multi-targeted cancer therapeutics. Cancer Treat Rev 35(7):597–607

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sarkar FH, Li Y, Wang Z, Kong D (2009) Pancreatic cancer stem cells and EMT in drug resistance and metastasis. Minerva Chir 64(5):489–500

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sarkar FH, Li Y, Wang Z, Padhye S (2010) Lesson learned from nature for the development of novel anti-cancer agents: implication of isoflavone, curcumin, and their synthetic analogs. Curr Pharm Des 16(16):1801–1812

    CAS  PubMed Central  PubMed  Google Scholar 

  • Semaan A, Qazi AM, Seward S, Chamala S, Bryant CS, Kumar S et al (2011) MicroRNA-101 inhibits growth of epithelial ovarian cancer by relieving chromatin-mediated transcriptional repression of p21(waf(1)/cip(1)). Pharm Res 28(12):3079–3090

    CAS  PubMed  Google Scholar 

  • Shafee N, Smith CR, Wei S, Kim Y, Mills GB, Hortobagyi GN et al (2008) Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors. Cancer Res 68(9):3243–3250

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shao Y, Qu Y, Dang S, Yao B, Ji M (2013) MiR-145 inhibits oral squamous cell carcinoma (OSCC) cell growth by targeting c-Myc and Cdk6. Cancer Cell Int 13(1):51

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D et al (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138(3):592–603

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siemens H, Jackstadt R, Hunten S, Kaller M, Menssen A, Gotz U et al (2011) miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 10(24):4256–4271

    CAS  PubMed  Google Scholar 

  • Smits M, Nilsson J, Mir SE, van der Stoop PM, Hulleman E, Niers JM et al (2010) miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis. Oncotarget 1(8):710–720

    PubMed  Google Scholar 

  • Solomides CC, Evans BJ, Navenot JM, Vadigepalli R, Peiper SC, Wang ZX (2012) MicroRNA profiling in lung cancer reveals new molecular markers for diagnosis. Acta Cytol 56(6):645–654

    CAS  PubMed  Google Scholar 

  • Sparmann A, van Lohuizen M (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6(11):846–856

    CAS  PubMed  Google Scholar 

  • Strillacci A, Valerii MC, Sansone P, Caggiano C, Sgromo A, Vittori L et al (2013) Loss of miR-101 expression promotes Wnt/beta-catenin signalling pathway activation and malignancy in colon cancer cells. J Pathol 229(3):379–389

    CAS  PubMed  Google Scholar 

  • Su Y, Simmen RC (2009) Soy isoflavone genistein upregulates epithelial adhesion molecule E-cadherin expression and attenuates beta-catenin signaling in mammary epithelial cells. Carcinogenesis 30(2):331–339

    PubMed  Google Scholar 

  • Su Y, Simmen FA, Xiao R, Simmen RC (2007) Expression profiling of rat mammary epithelial cells reveals candidate signaling pathways in dietary protection from mammary tumors. Physiol Genomics 30(1):8–16

    CAS  PubMed  Google Scholar 

  • Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R et al (2008) Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett 582(10):1564–1568

    CAS  PubMed  Google Scholar 

  • Takaoka Y, Shimizu Y, Hasegawa H, Ouchi Y, Qiao S, Nagahara M et al (2012) Forced expression of miR-143 represses ERK5/c-Myc and p68/p72 signaling in concert with miR-145 in gut tumors of Apc(Min) mice. PLoS One 7(8):e42137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451(7175):147–152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tian Y, Nan Y, Han L, Zhang A, Wang G, Jia Z et al (2012) MicroRNA miR-451 downregulates the PI3K/AKT pathway through CAB39 in human glioma. Int J Oncol 40(4):1105–1112

    CAS  PubMed  Google Scholar 

  • Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F et al (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1(4):389–402

    CAS  PubMed  Google Scholar 

  • Tsuchiya N, Izumiya M, Ogata-Kawata H, Okamoto K, Fujiwara Y, Nakai M et al (2011) Tumor suppressor miR-22 determines p53-dependent cellular fate through post-transcriptional regulation of p21. Cancer Res 71(13):4628–4639

    CAS  PubMed  Google Scholar 

  • Wagner J, Lehmann L (2006) Estrogens modulate the gene expression of Wnt-7a in cultured endometrial adenocarcinoma cells. Mol Nutr Food Res 50(4–5):368–372

    CAS  PubMed  Google Scholar 

  • Wang Z, Desmoulin S, Banerjee S, Kong D, Li Y, Deraniyagala RL et al (2008) Synergistic effects of multiple natural products in pancreatic cancer cells. Life Sci 83(7–8):293–300

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Meyers C, Guo M, Zheng ZM (2011) Upregulation of p18Ink4c expression by oncogenic HPV E6 via p53-miR-34a pathway. Int J Cancer 129(6):1362–1372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang T, Zang WQ, Li M, Wang N, Zheng YL, Zhao GQ (2013) Effect of miR-451 on the biological behavior of the esophageal carcinoma cell line EC9706. Dig Dis Sci 58(3):706–714

    PubMed  Google Scholar 

  • Xie P, Xu F, Cheng W, Gao J, Zhang Z, Ge J et al (2012) Infiltration related miRNAs in bladder urothelial carcinoma. J Huazhong Univ Sci Technol Med Sci 32(4):576–580

    CAS  PubMed  Google Scholar 

  • Xiong J, Yu D, Wei N, Fu H, Cai T, Huang Y et al (2010) An estrogen receptor alpha suppressor, microRNA-22, is downregulated in estrogen receptor alpha-positive human breast cancer cell lines and clinical samples. FEBS J 277(7):1684–1694

    CAS  PubMed  Google Scholar 

  • Xiong SW, Lin TX, Xu KW, Dong W, Ling XH, Jiang FN et al (2013) MicroRNA-335 acts as a candidate tumor suppressor in prostate cancer. Pathol Oncol Res 19(3):529–537

    CAS  PubMed  Google Scholar 

  • Xu Y, Zhao F, Wang Z, Song Y, Luo Y, Zhang X et al (2012) MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1. Oncogene 31(11):1398–1407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamada N, Noguchi S, Mori T, Naoe T, Maruo K, Akao Y (2013) Tumor-suppressive microRNA-145 targets catenin delta-1 to regulate Wnt/beta-catenin signaling in human colon cancer cells. Cancer Lett 335(2):332–342

    CAS  PubMed  Google Scholar 

  • Yamakuchi M, Yagi S, Ito T, Lowenstein CJ (2011) MicroRNA-22 regulates hypoxia signaling in colon cancer cells. PLoS One 6(5):e20291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yan Z, Xiong Y, Xu W, Gao J, Cheng Y, Wang Z et al (2012) Identification of hsa-miR-335 as a prognostic signature in gastric cancer. PLoS One 7(7):e40037

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yin S, Li J, Hu C, Chen X, Yao M, Yan M et al (2007) CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 120(7):1444–1450

    CAS  PubMed  Google Scholar 

  • Yin Y, Yan ZP, Lu NN, Xu Q, He J, Qian X et al (2013) Downregulation of miR-145 associated with cancer progression and VEGF transcriptional activation by targeting N-RAS and IRS1. Biochim Biophys Acta 1829(2):239–247

    CAS  PubMed  Google Scholar 

  • Yoshino H, Seki N, Itesako T, Chiyomaru T, Nakagawa M, Enokida H (2013) Aberrant expression of microRNAs in bladder cancer. Nat Rev Urol 10(7):396–404

    CAS  PubMed  Google Scholar 

  • Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C et al (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109–1123

    CAS  PubMed  Google Scholar 

  • Yu F, Deng H, Yao H, Liu Q, Su F, Song E (2010) Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 29(29):4194–4204

    CAS  PubMed  Google Scholar 

  • Yu C, Yao Z, Jiang Y, Keller ET (2012) Prostate cancer stem cell biology. Minerva Urol Nefrol 64(1):19–33

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu CC, Tsai LL, Wang ML, Yu CH, Lo WL, Chang YC et al (2013a) miR145 targets the SOX9/ADAM17 axis to inhibit tumor-initiating cells and IL-6-mediated paracrine effects in head and neck cancer. Cancer Res 73(11):3425–3440

    CAS  PubMed  Google Scholar 

  • Yu Y, Sarkar FH, Majumdar AP (2013b) Down-regulation of miR-21 induces differentiation of chemoresistant colon cancer cells and enhances susceptibility to therapeutic regimens. Transl Oncol 6(2):180–186

    PubMed Central  PubMed  Google Scholar 

  • Zhang B, Pan X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302(1):1–12

    CAS  PubMed  Google Scholar 

  • Zhang Z, Sun H, Dai H, Walsh RM, Imakura M, Schelter J et al (2009) MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT. Cell Cycle 8(17):2756–2768

    CAS  PubMed  Google Scholar 

  • Zhang J, Yang Y, Yang T, Liu Y, Li A, Fu S et al (2010) microRNA-22, downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity. Br J Cancer 103(8):1215–1220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang JG, Guo JF, Liu DL, Liu Q, Wang JJ (2011) MicroRNA-101 exerts tumor-suppressive functions in non-small cell lung cancer through directly targeting enhancer of zeste homolog 2. J Thorac Oncol 6(4):671–678

    PubMed  Google Scholar 

  • Zhang J, Han C, Zhu H, Song K, Wu T (2013) miR-101 inhibits cholangiocarcinoma angiogenesis through targeting vascular endothelial growth factor (VEGF). Am J Pathol 182(5):1629–1639

    CAS  PubMed  Google Scholar 

  • Zhong X, Li N, Liang S, Huang Q, Coukos G, Zhang L (2010) Identification of microRNAs regulating reprogramming factor LIN28 in embryonic stem cells and cancer cells. J Biol Chem 285(53):41961–41971

    CAS  PubMed  Google Scholar 

  • Zhu Y, Yu F, Jiao Y, Feng J, Tang W, Yao H et al (2011) Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clin Cancer Res 17(22):7105–7115

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We presented evidence as concisely as possible and during such effort we could not cite all the published data, and thus we sincerely apologize to those whose work could not be cited here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazlul H. Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bao, B. et al. (2014). The Biological Roles of MicroRNAs in Cancer Stem Cells. In: Babashah, S. (eds) MicroRNAs: Key Regulators of Oncogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-03725-7_12

Download citation

Publish with us

Policies and ethics