Motion Planning

  • Yasmina Bestaoui Sebbane
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 71)


Motion planning, still an active research topic is presented in this chapter. It is a fundamental task for an aerial robot that must plan complex strategies and establish long-term plans. Many topics are considered in this chapter. Controllability concerns the possibility for an aerial robot to fly from an initial position to another one. It provides an answer to the question whether the state can be driven to a specific point from any (nearby) initial condition and under an appropriate choice of control. Controllability of an aerial robot represented by its translational kinematic model is studied. The problem of trajectory planning, important aspect of aerial robot guidance, follows: trim trajectories and maneuvers are introduced as well as Dubins and Zermelo problems. The trajectories must be flyable and safe, Thus, nonholonomic motion planning is studied using the notions of differential flatness and nilpotence. As aerial robots are likely to operate in a dynamic environment, Collision avoidance is a fundamental part of motion planning. The operational environment is considered to be three dimensional, it may contain zones that the robot is not allowed to enter and these zones may not be fully characterized at the start of a mission. 3D aerial path planning has the objective to complete the given mission efficiently while maximizing the safety of the aircraft. To solve this problem, deterministic and probabilistic approaches are presented. To cope with imperfect information and dynamic environments, efficient replanning algorithms must be developed that correct previous solutions for a fraction of the computation required to generate such solutions from scratch, Thus, replanning methods such as incremental and anytime algorithms are studied.


  1. 1.
    Ambrosino G, Ariola M, Ciniglio U, Carraro F, Delellis E, Pironti A (2009) Path Generation and Tracking in 3D for UAVs. IEEE Trans Control Syst Technol 17:980–988CrossRefGoogle Scholar
  2. 2.
    Anderson R, Bakolas E, Milutinovic D, Tsiotras P (2013) Optimal feedback guidance of a small aerial vehicle in a stochastic wind. AIAA J Guidance Control Dyn 36:975–985CrossRefGoogle Scholar
  3. 3.
    Anderson R, Bakolas E, Milutinovic D, Tsiotras, P (2012) The Markov-Dubins problem in the presence of a stochastic drift field. In: Proceedings of the IEEE conference on decision control, pp 130–135Google Scholar
  4. 4.
    Arvanitakis I, Tzes A (2012) Trajectory optimization satisfying the robot’s kinodynamic constraints for obstacle avoidance. In: Proceedings of the 20th Mediterranean conference on control and automation, pp 128–133Google Scholar
  5. 5.
    Aurenhammer F (1991) Voronoi diagrams, a survey of fundamental geometric data structure. ACM Comput Surv 23:345–405CrossRefGoogle Scholar
  6. 6.
    Avanzini G (2004) Frenet based algorithm for trajectory prediction. AIAA J Guidance Control Dyn 27:127–135CrossRefGoogle Scholar
  7. 7.
    Bakolas E, Tsiotras P (2012) Feedback navigation in an uncertain flowfield and connections with pursuit strategies. AIAA J Guidance Control Dyn 35:1268–1279CrossRefGoogle Scholar
  8. 8.
    Ben Asher JZ (2010) Optimal control theory with aerospace applications. AIAA Press, RestonGoogle Scholar
  9. 9.
    Bestaoui Y (2012) 3 D flyable curve for an autonomous aircraft. In: ICNPAA world congress on mathematical problems in engineering, sciences and aerospace, Vienna, AIP Conference Proceedings, 1493, pp 132–139. doi:
  10. 10.
    Bestaoui Y (2011) 3D curves with a prescribed curvature and torsion for an aerial robot. Int J Comput Appl 41:269–274CrossRefGoogle Scholar
  11. 11.
    Bestaoui Y, Kahale E (2013) Time optimal trajectories of a lighter than air robot with second order constraints and a piecewise constant velocity wind. AIAA J Inf Syst 10:155–171. doi: 10.2514/1.55643 Google Scholar
  12. 12.
    Bestaoui Y, Hima S (2007) Modeling and trajectory generation of lighter than air aerial robot. In: Kozlowski K (ed) Robot motion and control 2007. Springer, LNCIS 360, pp 3–28Google Scholar
  13. 13.
    Bethke B, Valenti M, How JP (2008) UAV task assignment, an experimental demonstration with integrated health monitoring. IEEE J Rob Autom 33:39–44Google Scholar
  14. 14.
    Bhat S, Venkatraman A (2009) Optimal planar turns under acceleration constraints. IEEE Trans Autom Control 54:1654–1660Google Scholar
  15. 15.
    Biggs J, Holderbaum W, Jurdjevic V (2007) Singularities of optimal control problems on some 6D Lie groups. IEEE Trans Autom Control 52:1027–1038CrossRefMathSciNetGoogle Scholar
  16. 16.
    Bilimoria KD (2000) A geometric optimization approach to aircraft conflict resolution. In: AIAA guidance, navigation, and control conference, Denver, Co., paper AIAA-2000-4265Google Scholar
  17. 17.
    Blackmore L, Ono M, Bektassov A, Williams B (2010) A probabilistic particle control approximation of chance constrained stochastic predictive control. IEEE Trans Rob 26:502–517Google Scholar
  18. 18.
    Bloch AM (2003) Non holonomics mechanics and control. Springer, BerlinCrossRefGoogle Scholar
  19. 19.
    Boizot N, Gauthier JP (2013) Motion planning for kinematic systems. IEEE Trans Autom Control 58:1430–1442CrossRefMathSciNetGoogle Scholar
  20. 20.
    Boukraa D, Bestaoui Y, Azouz N (2008) Three dimensional trajectory generation for an autonomous plane. Inter Rev Aerosp Eng 4:355–365Google Scholar
  21. 21.
    Braunl T (2008) Embedded robotics. SpringerGoogle Scholar
  22. 22.
    Chakravorty S, Kumar S (2011) Generalized sampling based motion planners. IEEE Trans Syst Man Cybern part B: Cybernetics, 41:855–866Google Scholar
  23. 23.
    Chamseddine A, Li T, Zhang Y, Rabbath C, Theilliol D (2012) Flatness based trajectory planning for a quadrotor UAV test based considering actuator and system constraint. In: American control conference, Montreal, pp 920–925Google Scholar
  24. 24.
    Choset H, Lynch K, Hutchinson S, Kantor G, Burgard W, Kavraki L, Thrum S (2005) Principles of robot motion. The MIT Press, Theory, Algorithms and implementationMATHGoogle Scholar
  25. 25.
    Conte G, Moog CH, Perdon AM (2006) Algebraic methods for nonlinear control systems: theory and applications. Springer, New YorkGoogle Scholar
  26. 26.
    Conway BA (2010) Spacecraft trajectory optimization. Cambridge Press, New YorkCrossRefGoogle Scholar
  27. 27.
    Corbets JB, Langelaan JW (2010) Real time trajectory generation for target localization using micro air vehicles. AIAA J Aerosp Comput Inf Commun 7:223–240CrossRefGoogle Scholar
  28. 28.
    Corke P (2011) Robotics, vision and control: Fundamentals algorithms in Matlab. Springer, BerlinGoogle Scholar
  29. 29.
    Cormen TH (2009) Introduction to algorithms. The MIT Press, CambridgeMATHGoogle Scholar
  30. 30.
    Coron J-M (1998) On the stabilization of some nonlinear control systems: results, tools, and applications. NATO Advanced Study Institute, MontrealGoogle Scholar
  31. 31.
    Dadkhah N, Mettler B (2012) Survey of motion planning literature in the presence of uncertainty: considerations for UAV guidance. J Intell Rob Syst 65:233–246Google Scholar
  32. 32.
    Dai R, Cochran J (2010) Path planning and state estimation for UAV in hostile environments. AIAA J Guidance Control Dyn 33:595–601CrossRefGoogle Scholar
  33. 33.
    Davis JD, Chakravorty S (2007) Motion planning under uncertainty: application to an unmanned helicopter. AIAA J Guidance Control Dyn 30:1268–1276CrossRefGoogle Scholar
  34. 34.
    Dicheva S, Bestaoui Y (2011) Route finding for an autonomous aircraft. AIAA aerospace sciences meeting, Orlando, Fl. doi: 10.2514/6.2011-79
  35. 35.
    Dicheva S, Bestaoui Y (2012) 3D waypoint generation in a dynamic environment for an airborne launch mission. Proc Inst Mech Eng [G] J Aerosp Eng 226:1283–1297. doi: 10.1177/0954410011419565
  36. 36.
    Dubins LE (1957) On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents. Am J Math 79:497–517CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Duleba I, Sasiadek J (2003) Nonholonomic motion planning based on Newton algorithm with energy optimization. IEEE Trans Control Syst Technol 11:355–363Google Scholar
  38. 38.
    Eele A, Richards A (2009) Path planning with avoidance using nonlinear branch and bound optimization. AIAA J Guidance Control Dyn 32:384–394CrossRefGoogle Scholar
  39. 39.
    Egerstedt M, Martin C (2004) A note on the connection between Bezier curves and linear optimal control. IEEE Trans Autom Control 49:1728–1731CrossRefMathSciNetGoogle Scholar
  40. 40.
    Fahimi F (2009) Autonomous robots: modeling, path planning and control. Springer, New YorkCrossRefGoogle Scholar
  41. 41.
    Farault J (2008) Analysis on Lie groups: an introduction. Cambridge studies in advanced mathematics, Springer, New YorkCrossRefGoogle Scholar
  42. 42.
    Farouki RT (2008) Pythagorean hodograph curves. Springer, BerlinCrossRefMATHGoogle Scholar
  43. 43.
    Ferguson D, Kalva N, Stentz A (2006) Replanning with RRT. In: IEEE International Conference on Robotics and Automation, pp 1243–1248. doi: 1.01109/ROBOT.2006/641879
  44. 44.
    De Filippis L, Guglieri G (2012) Path planning strategies for UAV in 3D environments. J Int Rob Syst 65:247–264CrossRefGoogle Scholar
  45. 45.
    Fraichard T, Scheuer A (2008) From reeds and Shepp’s to continuous curvature paths. IEEE Trans Rob 20:1025–10355CrossRefGoogle Scholar
  46. 46.
    Frazzoli E, Dahleh MA, Feron E (2008) Maneuver based motion planning for nonlinear systems with symmetries. IEEE Trans Rob 4:355–365Google Scholar
  47. 47.
    Frazzoli E, Dahleh MA, Feron E (2002) Real time motion planning for agile autonomous vehicles. AIAA J Guidance Control Dyn 25:116–129Google Scholar
  48. 48.
    Funabiki K, Ijima T, Nojima T (2013) Method of trajectory generation for perspective flight path display in estimated wind condition. J Aerosp Inf Syst 10:240–249. doi: 10.2514/1.37527 Google Scholar
  49. 49.
    Garcia M, Viguria A, Ollero A (2012) Dynamic graph search algorithm for global path planning in presence of hazardous weather. J Intell Rob Syst. doi: 10.1007/s10846-012-9704-7
  50. 50.
    Goerzen C, Kong Z, Mettler B (2010) A survey of motion planning algorithms from the perspective of autonomous UAV guidance. J Intell Rob Syst 20:65–100CrossRefGoogle Scholar
  51. 51.
    Gong Q, Lewis LR, Ross IM (1991) Pseudospectral motion planning for autonomous vehicles. AIAA J Guidance Control Dyn 32:1039–1045CrossRefGoogle Scholar
  52. 52.
    Guerrero JA, Bestaoui Y (2013) UAV path planning for structure inspection in windy environments. J Intell Rob Syst 69, 297–311Google Scholar
  53. 53.
    Guerrero JA, Bestaoui Y, Lozano R (2012) Optimal guidance for rotorcraft platoon formation flying in wind fields. In: Guerrero JA, R. Lozano R (ed) Unmanned aerial vehicles formation. Wiley-ISTE, ISBN: 978-1-84821-323-4Google Scholar
  54. 54.
    Habib Z, Sakai M (2003) Family of \(G^2\) cubic transition curves. In: International conference on geometric modelling and graphics, pp 117–122. doi: 10.1109/GMAG.2003.1219675
  55. 55.
    Held M (2001) VRONI: an engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments. Comput Geom 18:95–123CrossRefMATHMathSciNetGoogle Scholar
  56. 56.
    Holt J, Biaz S, Affane AC (2013) Comparison of unmanned aerial system collision avoidance algorithm in a simulated environment. AIAA J Guidance Control Dyn 36:881–883CrossRefGoogle Scholar
  57. 57.
    Horwood J, Aragon N, Poore A (2011) Gaussian sum filters for space surveillance: theory and simulation. AIAA J Guidance Control Dyn 34:1839–1851CrossRefGoogle Scholar
  58. 58.
    Hota S, Ghose D (2009) A modified Dubins method for optimal path planning for a miniature air vehicle converging to a straight line path. In: American control conference, pp 2397–2402Google Scholar
  59. 59.
    Hsu D, Isler V, Latombe JC, Lin MC (2011) Algorithmic foundations of robotic. Springer, BerlinGoogle Scholar
  60. 60.
    Igarashi H, Loi K (2001) Path-planning and navigation of a mobile robot as a discrete optimisation problems. Art Life Rob 5:72–76CrossRefGoogle Scholar
  61. 61.
    Jaakoola TS (2001) Tutorial on variational approximation methods. In: Opper M, Saad D (eds) Advanced Mean Field Methods, MIT Press, CambridgeGoogle Scholar
  62. 62.
    Jaklic G, Kozak J, Krajnc M, Vitrih V, Zagar E (2008) Geometric lagrange interpolation by planar cubic pythagorean hodograph curves. Compu Aided Geom Des, 720–728Google Scholar
  63. 63.
    Janiak M, Tchon K (2011) Constrained motion planning of nonholonomic systems. Syst Control Lett 60:625–631CrossRefMATHMathSciNetGoogle Scholar
  64. 64.
    Jardin MR, Bryson AE (2001) Neighboring optimal aircraft guidance in winds. AIAA J Guidance Control Dyn 24:710–715CrossRefGoogle Scholar
  65. 65.
    Jardin MR, Bryson AE (2012) Methods for computing minimum time paths in strong winds. AIAA J Guidance Control Dyn 35:165–171CrossRefGoogle Scholar
  66. 66.
    Jennings AL, Ordonez R, Ceccarelli N (2008) Dynamic programming applied to UAV way point path planning in wind. IEEE international symposium on computer-aided control system design. San Antonio, TX, pp 215–220Google Scholar
  67. 67.
    Jiang Z, Ordonez R (2008) Robust approach and landing trajectory generation for reusable launch vehicles in winds. 17th IEEE international conference on control applications. San Antonio, TX, pp 930–935Google Scholar
  68. 68.
    Jurdjevic V (2008) Geometric control theory. Cambridge studies in advanced mathematics, Cambridge University Press, CambridgeGoogle Scholar
  69. 69.
    Kaelbling L, Lozano-Perez T (2012) Integrated robot task and motion planning in belief space. Technical report MIT-CSAIL-TR-2012-09, MITGoogle Scholar
  70. 70.
    Kala R, Shukla A, Tiwari R (2010) Fusion of probabilistic A* algorithm and fuzzy inference system for robotic path planning. Artificial Intell Rev 307–327, SpringerGoogle Scholar
  71. 71.
    Kalra N, Ferguson D, Stentz A (2009) Incremental reconstruction of generalized voronoi diagrams on grid. Rob Auton Syst 57:123–128CrossRefGoogle Scholar
  72. 72.
    Kalyanam K, Chandler P, Pachter M, Darbha S (2012) Optimization of perimeter patrol operations using UAV. J Guidance Control Dyn 35:434–441CrossRefGoogle Scholar
  73. 73.
    Kaminer I, Khargonekar PP, Robel G (1990) Design of a localizer capture and track modes for a lateral autopilot using \(H_{\infty }\) synthesis. IEEE Control Syst Mag 10:13–21Google Scholar
  74. 74.
    Kampke T, Elfes A (2003) Optimal aerobot trajectory planning for wind based opportunity flight control. IEEE/RSJ International conference on intelligent robots and systems. Las Vegas, NV, pp 67–74Google Scholar
  75. 75.
    Karaman S, Frazzoli E (2010) Incremental sampling-based algorithms for optimal motion planning. In: Matsuoka Y, Durrant-White H, Neira J (eds) Robotics, science and systems. The MIT Press, pp 267–274Google Scholar
  76. 76.
    Kavraki L, Latombe JC (1994) Randomized preprocessing of configuration space for fast path planning. IEEE Inter Conf Rob Autom 3:2138–2145Google Scholar
  77. 77.
    Khatib O (1985) Real time obstacle avoidance for manipulators and mobile robots. In: IEEE international conference on robotics and automationGoogle Scholar
  78. 78.
    Kim J, Khosla PK (1992) Real time obstacle avoidance using harmonic potential functions. IEEE Trans Rob Autom 8:338–349Google Scholar
  79. 79.
    Kong Z, Mettler B (2009) On the general characteristics of 2D optimal obstacle field guidance solution. In: IEEE conference on decision and control, pp 3448–3453Google Scholar
  80. 80.
    Kozlowski K (ed) (2006) Robot motion and control: recent developments. Springer, HeidelbergGoogle Scholar
  81. 81.
    Krozel J, Penny S, Prete J, Mitchell JSB (2007) Automated route generation for avoiding deterministic weather in transition airspace. AIAA J Guidance Control Dyn 30:144–153CrossRefGoogle Scholar
  82. 82.
    Kuwata Y, Schouwenaars T, Richards A, How J (2005) Robust constrained receding horizon control for trajectory planning. In: AIAA conference on guidance, navigation and controlGoogle Scholar
  83. 83.
    Langelan JW, Chakrabarty A, Deng A, Miles K (2013) Green flight challenge: aircraft design and flight planning for extreme fuel efficiency. AIAA J Aircr 50:832–846CrossRefGoogle Scholar
  84. 84.
    Laugier C, Chatila R (eds) (2007) Autonomous navigation in dynamic environment. Springer, HeidelbergGoogle Scholar
  85. 85.
    Laumond JP (1998) Robot motion planning and control, LNCIS 229. Springer, New YorkGoogle Scholar
  86. 86.
    Lavalle SM (2006) Planning algorithms. Cambridge University Press, CambridgeGoogle Scholar
  87. 87.
    LeNy J, Feron E, Frazzoli E (2012) On the dubins traveling salesman problem. IEEE Trans Autom Control 57:265–270CrossRefMathSciNetGoogle Scholar
  88. 88.
    Li Z, Canny JF (1992) Non holonomic motion planning. Kluwer Academic Press, BerlinGoogle Scholar
  89. 89.
    Likhachev M, Ferguson D, Gordon G, Stentz A, Thrun S (2005) Anytime dynamic A*: an anytime replanning algorithm. In: Proceedings of the international conference on automated planning and scheduling: ICAPS, American Association for Artificial Intelligence,
  90. 90.
    Lorenz RD (2001) Flight power scaling of airplanes, airships and helicopters: application to planetary exploration. AIAA J Aircr 38:208–214CrossRefGoogle Scholar
  91. 91.
    Ludington B, Johnson E, Vachtsevanos A (2006) Augmenting UAV autonomy (GTMAX). IEEE Rob Autom Mag 21:67–71Google Scholar
  92. 92.
    Macharet D, Neto AA, Campos M (2009) On the generation of feasible paths for aerial robots in environments with obstacles. In: IEEE/RSJ international conference on intelligent robots and systems, pp 3380–3385Google Scholar
  93. 93.
    Mantegh I, Jenkin M, Goldenberg A (2010) Path planning for autonomous mobile robots using the boundary integral equation method. J Intell Rob Syst. doi: 10/1007 MATHGoogle Scholar
  94. 94.
    Marble JD, Bekris K (2013) Asymptotically near-optimal planning with probabilistic roadmap spanners. IEEE Trans Rob 29:432–444CrossRefGoogle Scholar
  95. 95.
    Marigo A, Bichi A (1998) Steering driftless nonholonomic systems by control quanta. IEEE Inter Conf Decis Control 4:466–478Google Scholar
  96. 96.
    Marsden J, Ratiu TS (1999) Introduction to mechanics and symmetry. Springer, New YorkGoogle Scholar
  97. 97.
    Martin P, Egerstedt M (2008) Expanding motion programs under input constraints. 9th international workshop on discrete event systems. Goteborg, Sweden, pp 156–161Google Scholar
  98. 98.
    Masoud AA (2010) Kinodynamic motion planning. In: IEEE robotics and automation magazine, pp 85–99Google Scholar
  99. 99.
    Mattei M, Blasi L (2010) Smooth flight trajectory planning in the presence of no-fly zones and obstacles. AIAA J Guidance Control Dyn 33(2), 454–462Google Scholar
  100. 100.
    Matveev AS, Teimoori H, Savkin A (2010) Navigation of a nonholonomic vehicle for gradient climbing and source seeking without gradient estimation. In: American control conference, pp 219–223Google Scholar
  101. 101.
    McGee T, Hedrick JK (2007) Optimal path planning with a kinematic airplane model. AIAA J Guidance Control Dyn 30, 629–633Google Scholar
  102. 102.
    Mettler B, Dakhah N, Kong Z (2010) Agile autonomous guidance using spatial value functions. Control Eng Pract 18:773–788CrossRefGoogle Scholar
  103. 103.
    Miele A, Wang T, Melvin W (1986) Optimal take-off trajectories in the presence of windshear. J Optim Theory Appl 49:1–45CrossRefMATHMathSciNetGoogle Scholar
  104. 104.
    Miele A, Wang T, Melvin W (1989) Penetration landing guidance trajectories in the presence of windshear. AIAA J Guidance 12:806–814CrossRefMathSciNetGoogle Scholar
  105. 105.
    Missiuro P, Roy N (2006) Adaptive probabilistic roadmaps to handle uncertain maps. IEEE international conference on robotics and automation. Orlando, Fl, pp 1261–1267Google Scholar
  106. 106.
    Mujumdar A, Padhi R (2011) Evolving philosophies for autonomous obstacle/collision avoidance of UAV. AIAA J Aerosp Inf Commun 28:17–41CrossRefGoogle Scholar
  107. 107.
    Naldi R, Marconi L (2011) Optimal transition maneuvers for a class of V/STOL aircraft. Automatica 47:870–879CrossRefMATHMathSciNetGoogle Scholar
  108. 108.
    Narayaman V, Phillips M, Likhachev M (2012) Anytime safe interval path planning for dynamic environments. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems: IROSGoogle Scholar
  109. 109.
    N’doye I, Zasadzinski M, Darouach M, Radhy N (2011) Exponential stabilization of a class of nonlinear systesm: a generalized Gronwall Bellman lemma approach. Nonlinear Anal 74:7333–7341CrossRefMATHMathSciNetGoogle Scholar
  110. 110.
    Nelson R, Barber B, McLain T, Beard R (2007) Vector field path following for miniature air vehicle. IEEE Trans Rob 23:519–529CrossRefGoogle Scholar
  111. 111.
    Neri F, Cotta C (2011) Memetic algorithms and memetic optimization: a literature review. Swarm Evol Comput. doi: 10.1016/j.swewo.2011.11.003 MATHGoogle Scholar
  112. 112.
    Ogren P, Winstrand M (2008) Minimizing mission risks in fuel constrained UAV path planning. AIAA J Guidance Control Dyn 31:1497–1500CrossRefGoogle Scholar
  113. 113.
    Okabe AR, Boots B, Sugihara K, Chiu SN (2000) Spatial tessalations: concepts and applications of Voronoi diagrams. Wiley, ChichesterGoogle Scholar
  114. 114.
    Patsko VS, Botkin ND, Kein VM, Turova VL, Zarkh MA (1994) Control of an aircraft landing in windshear. J Optim Theory Appl 83:237–267CrossRefMATHMathSciNetGoogle Scholar
  115. 115.
    Perez A, Platt R, Konidanis G, Kaelbling L, Lozano-Perez T (2012) LQG-RRT* optimal sampling based motion Planning with automatically derived extension heuristics. In: IEEE international conference on robotics and automation, 2537–2542Google Scholar
  116. 116.
    Perk B, Slotine JJ (2006) Motion primitives for robotic flight control. arXiv preprint cs/0609140, 2006 - arxiv.orgGoogle Scholar
  117. 117.
    Pettersson PO, Doherty P (2004) Probabilistic road map based path planning for an autonomous unmanned aerial vehicle. In: Workshop on connecting planning theory with practiceGoogle Scholar
  118. 118.
    Phillips JM, Bedrossian N, Kavraki LE (2004) Guided expansive space trees: a search strategy for motion and cost constrained state spaces. IEEE Int Conf Rob Autom 5:3968–3973Google Scholar
  119. 119.
    Piazzi A, Guarino Lo Bianco C, Romano M (2007) \(\eta ^3\) splines for the smooth path generation of wheeled mobile robot. IEEE Trans Rob 5:1089–1095CrossRefGoogle Scholar
  120. 120.
    Plaku E, Hager GD (2010) Sampling based motion and symbolic action planning with geometric and differential constraints. In: IEEE international conference on robotics and automation, pp 5002–5008Google Scholar
  121. 121.
    Prats X, Puig V, Quevedo J, Nejjari F (2010) Lexicographic optimization for optimal departure aircraft trajectories. Aerosp Sci Technol 14, 26–37Google Scholar
  122. 122.
    Prats X, Santamaria E, Delgado L, Juillo N (2013) Enabling leg-based guidance on top of way-points based autopilots for UAS. Aerosp Sci Technol 24, 95–100Google Scholar
  123. 123.
    Rabier PJ, Rheinboldt WC (2000) Nonholonomic motion of rigid mechanical systems from a DAE viewpoint. SIAM press, PhiladelphiaGoogle Scholar
  124. 124.
    Revzen S, Ilhen D, Koditscheck D (20112) Dynamical trajectory replanning for uncertain environments. In: 51st IEEE Conference on decision and control, Hawaii, pp 3476–3483Google Scholar
  125. 125.
    Richards A, Schouwenaars T, How J, Feron E (2002) Spacecraft trajectory planning with avoidance constraints using mixed-integer linear programming. AIAA J Guidance Control Dyn 25:755–764Google Scholar
  126. 126.
    Ross S, Melik-Barkhudarov N, Shankar KS, Wendel A (2012) Learning monocular reactive UAV control in cluttered natural, environments. arXiv:1211.1690 [cs.RO]Google Scholar
  127. 127.
    Rysdyk R (2007) Course and heading changes in significant wind. AIAA J Guidance Control Dyn 30:1168–1171CrossRefGoogle Scholar
  128. 128.
    Saccon A, Hauser J, Aguiar A (2010) Optimal control on Lie groups: the projection operator approach. IEEE Trans Autom Control 58:2230–2245CrossRefMathSciNetGoogle Scholar
  129. 129.
    Samar R, Rehman A (2011) Autonomous terrain following for unmanned air vehicles. Mechatronics 21:844–860CrossRefGoogle Scholar
  130. 130.
    Santamaria E, Pastor E, Barrado C, Pratts X, Royo P, Perez M (2012) Flight plan specification and management for unmanned aircraft system. J Intell Rob Syst 67:155–181CrossRefGoogle Scholar
  131. 131.
    Sastry S (1999) Nonlinear systems, analysis, stability and control. SpringerGoogle Scholar
  132. 132.
    Schouwenaars T, Mettler B, Feron E (2004) Hybrid model for trajectory planning of agile autonomous vehicles. AIAA J Aeronaut Comput Inf Commun 12:466–478Google Scholar
  133. 133.
    Selig JM (1996) Geometric methods in robotics. Springer, New YorkGoogle Scholar
  134. 134.
    Shaffer PJ, Ross IM, Oppenheimer MW, Doman DB (2007) Fault tolerant optimal trajectory generator for reusable launch vehicles. AIAA J Guidance Control Dyn 30:1794–1802CrossRefGoogle Scholar
  135. 135.
    Siciliano B, Sciavicco L, Villani L, Oriolo G (2009) Robotics, modelling, planning, and control. Springer, LondonGoogle Scholar
  136. 136.
    Simonin E, Diard J (2008) BBPRM: a behavior based probabilistic roadmap method. IEEE Int Conf Syst Man Cybern 1719–1724, doi: 10.1109/CSMC.2008.4811536
  137. 137.
    Slegers N, Kyle J, Costello M (2006) Nonlinear model predictive control technique for unmanned air vehicles. AIAA J Guidance Control Dyn 29:5CrossRefGoogle Scholar
  138. 138.
    Smith OJ, Boland N, Waterer H (2012) Solving shortest path problem with a weight constraint and replishnement arcs. Comput Oper Res 39:964–984CrossRefMATHMathSciNetGoogle Scholar
  139. 139.
    Sontag ED (1998) Mathematical control theory: Deterministic finite dimensional systems. Springer, New YorkGoogle Scholar
  140. 140.
    Soueres P, Laumond JP (1996) Shortest paths synthesis for a car-like robot. IEEE Trans Rob 41:672–688MATHMathSciNetGoogle Scholar
  141. 141.
    Spooner JT, Maggiore M, Ordonez R, Passino KM (2002) Stable adaptive control and estimation for nonlinear systems: neural and fuzzy approximator techniques. Wiley, New YorkGoogle Scholar
  142. 142.
    Standley T, Korf R (2011) Complete algorithms for cooperative path finding problems. In: 22nd international joint conference on artificial intelligence, pp 668–673Google Scholar
  143. 143.
    Subchan S, Zbikowski R (2009) Computational optimal control: Tools and practice. Wiley, Chichester, UKGoogle Scholar
  144. 144.
    Sussmann HJ, Tang G (1991) Shortest paths for the reeds-shepp car: a worked out example of the use of geometric techniques in nonlinear optimal control. In: SYCON, rutgers center for systems and controlGoogle Scholar
  145. 145.
    Sussmann J (1995) Shortest 3-dimensional paths with a prescribed curvature bound. In: 34th IEEE conference on decision and control, pp 3306–3312Google Scholar
  146. 146.
    Sussmann HJ (1987) A general theorem on local controllability. SIAM J Control Optim 25:158–195CrossRefMATHMathSciNetGoogle Scholar
  147. 147.
    Temizer S (2011) Planning under uncertainty for dynamic collision avoidance. PhD Thesis, MITGoogle Scholar
  148. 148.
    Tsiotras P, Jung D, Bakolas E (2012) Multiresolution hierarchical path planning with small UAV using wavelet decomposition. J Intell Rob Syst 66:505–522CrossRefGoogle Scholar
  149. 149.
    VanderBerg JP, Shah R, Huang A, Goldberg K (2011) ANA*: anytime Nonparametric A*. AAAI, paper presented at the" 25th AAAI conference on Artificial IntelligenceGoogle Scholar
  150. 150.
    Virtanen K, Hamalainen RP, Mattika V (2006) Team optimal Signaling strategies in air combat. IEEE Trans Syst Man Cybern 36:643–660Google Scholar
  151. 151.
    Wang X, Wei G, Sun J (2011) Free knot recursive B spline for compensation of nonlinear smart sensors. Measurement 44:888–894CrossRefGoogle Scholar
  152. 152.
    Watkins AS (2007) Vision based map building and trajectory planning to enable autonomous flight through urban environments. In: PhD Thesis, University of Florida, GainesvilleGoogle Scholar
  153. 153.
    Watts R, Claus Christmann H, Johnson E, Fengl K (2012) Development and evaluation of an automated path planning aid. AIAA J Aircr 49:1774–1785CrossRefGoogle Scholar
  154. 154.
    Webb D, VandenBerg J (2012) Kinodynamic RRT*: optimal motion planning for systems with liner differential constraints. arXiv preprint arXiv:1205.5088, 2012 - arxiv.orgGoogle Scholar
  155. 155.
    Wie B (1998) Space vehicle dynamics and control. AIAA education series, AIAA Press, Reston, VaGoogle Scholar
  156. 156.
    Wilton D, Rao S, Glisson A (1984) Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains. IEEE Trans Antennas Propag 32:276–281CrossRefGoogle Scholar
  157. 157.
    Wu A, How J (2012) Guaranteed infinite horizon avoidance of impredictable dynamically constrained obstacles. Auton Rob 32:227–242CrossRefMathSciNetGoogle Scholar
  158. 158.
    Yakimenko OA (2000) Direct method for rapid prototyping of near optimal aircraft trajectory. AIAA J Guidance Control Dyn 23:865–875CrossRefGoogle Scholar
  159. 159.
    Yokoyama N (2013) Path generation algorithm for turbulence avoidance using real-time optimization. AIAA J Guidance Control Dyn, 36, 2500–262Google Scholar
  160. 160.
    Zhou Z, Takei R, Huang H, Tomlin C (2012) A general open loop formulation for reach-avoid games. In: 51st IEEE Conference on decision and control, Hawaii, pp 6501–6506Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.UFR Sciences and TechnologiesUniversité d’Evry Val-D’EssoneEvryFrance

Personalised recommendations