Advertisement

3D EEG Source Localisation: A Preliminary Investigation Using MML

  • Thi Han Kyaw
  • David L. Dowe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8272)

Abstract

Electroencephalography (EEG) source localisation (a.k.a. the inverse problem) is a widely researched topic with a large compendium of methods available. It combines the classic EEG signal processing techniques with modern methods to estimate the precise location of the sources of these signals inside the brain. Myriad factors define the differences in each of these techniques. We present here a previously untried application of the Minimum Message Length (MML) principle to the inverse problem with strictly preliminary findings. We first discuss the problem formulation of EEG source localisation and then attempt a preliminary inclusion of MML in the analysis. In this early stage, tests were conducted based on a simple head model using only artificial data.

Keywords

Electroencephalography EEG source localisation inverse problem Minimum Message Length 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baillet, S., Mosher, J.C., Leahy, R.M.: Electromagnetic Brain Mapping. IEEE Signal Processing Magazine 18(6), 14–30 (2001)CrossRefGoogle Scholar
  2. 2.
    Boulton, D.M., Wallace, C.S.: An information measure for hierarchic classification. The Computer Journal 16(3), 254–261 (1973)CrossRefGoogle Scholar
  3. 3.
    Dowe, D.L.: MML, hybrid Bayesian network graphical models, statistical consistency, invariance and uniqueness. In: Bandyopadhyay, P.S., Forster, M.R. (eds.) Handbook of the Philosophy of Science. Philosophy of Statistics, vol. 7, pp. 901–982. Elsevier (2011)Google Scholar
  4. 4.
    Edwards, R.T., Dowe, D.L.: Single factor analysis in MML mixture modelling. In: Wu, X., Kotagiri, R., Korb, K.B. (eds.) PAKDD 1998. LNCS, vol. 1394, pp. 96–109. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Grech, R., Cassar, T., Muscat, J., Camilleri, K., Fabri, S., Zervakis, M., Xanthopoulos, P., Sakkalis, V., Vanrumste, B.: Review on solving the Inverse problem in EEG source analysis. Journal of NeuroEngineering and Rehabilitation 5(1), 25 (2008)CrossRefGoogle Scholar
  6. 6.
    Hallez, H., Vanrumste, B., Grech, R., Muscat, J., Clercq, W.D., Vergult, A., D’Asseler, Y., Camilleri, K.P., Fabri, S.G., Van Huffel, S.: Review on solving the forward problem in EEG source analysis. Journal of NeuroEngineering and Rehabilitation (1), 46 (2007)Google Scholar
  7. 7.
    Nunez, P.L., Srinivasan, R.: Electric Fields of the Brain: The neurophysics of EEG. Oxford Scholarship Online (May 2009)Google Scholar
  8. 8.
    Pascual-Marqui, R.D.: Standardized low resolution brain electromagnetic tomography (sLORETA): technical details. Technical report, The KEY Institute for Brain-Mind Research, University Hospital of Psychiatry Lenggstr, 31, CH-8029 Zurich, Switzerland (2002)Google Scholar
  9. 9.
    Phan, T.G., Gureyev, T.E., Nesterets, Y., Ma, H., Thyagarajan, D.: Novel application of EEG Source Localization in the assessment of the penumbra. Cerebrovascular Diseases 33(4), 405–407 (2012)CrossRefGoogle Scholar
  10. 10.
    Ramirez, R.R.: Source Localization. Scholarpedia 3(11), 1733 (2008)CrossRefGoogle Scholar
  11. 11.
    Visser, G., Dowe, D.L.: Minimum Message Length Clustering of Spatially-Correlated Data with Varying Inter-Class Penalties. In: Proc. 6th IEEE International Conf. on Computer and Information Science (ICIS) 2007, pp. 17–22 (July 2007)Google Scholar
  12. 12.
    Wallace, C.S.: Intrinsic Classification of Spatially Correlated Data. The Computer Journal 41(8), 602–611 (1998)CrossRefzbMATHGoogle Scholar
  13. 13.
    Wallace, C.S.: Statistical and Inductive Inference by Minimum Message Length. Springer (May 2005)Google Scholar
  14. 14.
    Wallace, C.S., Boulton, D.M.: An Information Measure for Classification. The Computer Journal 11(2), 185–194 (1968)CrossRefzbMATHGoogle Scholar
  15. 15.
    Wallace, C.S., Dowe, D.L.: Intrinsic classification by MML the snob program. In: Proc. Seventh Australian Joint Conf. Artificial Intelligence, pp. 37–44. World Scientific (1994)Google Scholar
  16. 16.
    Wallace, C.S., Dowe, D.L.: MML clustering of multi-state, Poisson, von Mises circular and Gaussian distributions. Statistics and Computing 10(1), 73–83 (2000)CrossRefGoogle Scholar
  17. 17.
    Wu, S.C., Swindlehurst, A.L.: Matching Pursuit and Source Deflation for Sparse EEG/MEG Dipole Moment Estimation. IEEE Transactions on Biomedical Engineering PP(99), 1–1 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Thi Han Kyaw
    • 1
  • David L. Dowe
    • 1
  1. 1.Computer Science, Clayton School of I.T.Monash UniversityClaytonAustralia

Personalised recommendations