Advertisement

Detecting Mutex Pairs in State Spaces by Sampling

  • Mehdi Sadeqi
  • Robert C. Holte
  • Sandra Zilles
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8272)

Abstract

In the context of state space planning, a mutex pair is a pair of variable-value assignments that does not occur in any reachable state. Detecting mutex pairs is a problem that has been addressed frequently in the planning literature. In this paper, we present the Missing Mass Method (MMM)—a new efficient and domain-independent method for mutex pair detection, based on sampling reachable states. We exploit a recent result from statistical theory, proven by Berend and Kontorovich in [1], that bounds the probability mass of missing events in a sample of a given size. We tested MMM empirically on various sizes of four standard benchmark domains from the planning and heuristic search literature. In many cases, MMM works perfectly, i.e., finds all and only the mutex pairs. In the other cases, it is near-perfect: it correctly labels all mutex pairs and more than 99.99% of all non-mutex pairs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berend, D., Kontorovich, A.: The missing mass problem. Stat. and Prob. Lett. 82, 1102–1110 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artif. Intell. 90(1), 1636–1642 (1995)Google Scholar
  3. 3.
    Bonet, B., Geffner, H.: Planning as heuristic search. Artif. Intell. 129(1-2), 5–33 (2001)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, Y., Xing, Z., Zhang, W.: Long-distance mutual exclusion for propositional planning. In: IJCAI, pp. 1840–1845 (2007)Google Scholar
  5. 5.
    Culberson, J., Schaeffer, J.: Pattern databases. Comput. Intell. 14(3), 318–334 (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dawson, C., Siklóssy, L.: The role of preprocessing in problem solving systems. In: IJCAI, pp. 465–471 (1977)Google Scholar
  7. 7.
    Haslum, P.: Admissible Heuristics for Automated Planning. Linköping Studies in Science and Technology: Dissertations. Dept. of Computer and Information Science. Linköpings Univ. (2006)Google Scholar
  8. 8.
    Haslum, P., Bonet, B., Geffner, H.: New admissible heuristics for domain-independent planning. In: AAAI, pp. 1163–1168 (2005)Google Scholar
  9. 9.
    Helmert, M.: The Fast Downward planning system. J. Artif. Intell. Res. 26, 191–246 (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    Helmert, M., Lasinger, H.: The Scanalyzer domain: Greenhouse logistics as a planning problem. In: ICAPS, pp. 234–237 (2010)Google Scholar
  11. 11.
    Hernádvölgyi, I., Holte, R.: PSVN: A vector representation for production systems. Technical Report TR-99-04, Dept. of Computer Science, Univ. of Ottawa (1999)Google Scholar
  12. 12.
    Ribeiro, B.F., Towsley, D.F.: Estimating and sampling graphs with multidimensional random walks. CoRR abs/1002.1751 (2010)Google Scholar
  13. 13.
    Sadeqi, M., Holte, R.C., Zilles, S.: Using coarse state space abstractions to detect mutex pairs. In: SARA, pp. 104–111 (2013)Google Scholar
  14. 14.
    Thayer, J., Ruml, W.: Bounded suboptimal search: A direct approach using inadmissible estimates. In: IJCAI 2011, pp. 674–679 (2011)Google Scholar
  15. 15.
    Zilles, S., Holte, R.C.: The computational complexity of avoiding spurious states in state space abstraction. Artif. Intell. 174, 1072–1092 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Mehdi Sadeqi
    • 1
  • Robert C. Holte
    • 2
  • Sandra Zilles
    • 1
  1. 1.Department of Computer ScienceUniversity of ReginaReginaCanada
  2. 2.Department of Computing ScienceUniversity of AlbertaEdmontonCanada

Personalised recommendations