Supraclassical Consequence Relations

Tolerating Rare Counterexamples
  • Willem Labuschagne
  • Johannes Heidema
  • Katarina Britz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8272)


We explore a family of supraclassical consequence relations obtained by varying the criteria according to which counterexamples to classical entailment may be deemed tolerable. This provides a different perspective on the rational consequence relations of nonmonotonic logic, as well as introducing new kinds of entailment with a diversity of potential contextual applications.


Nonmonotonic logic Preference order Induction Abduction Supraclassical consequence Rational consequence Dual preferential consequence Correlative preferential consequence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Britz, K., Heidema, J., Labuschagne, W.: Semantics for dual preferential entailment. Journal of Philosophical Logic 38, 433–446 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Britz, K., Heidema, J., Varzinczak, I.: Constrained consequence. Logica Universalis 5, 327–350 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Freund, M.: On the notion of concept I. Artificial Intelligence 172, 570–590 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Freund, M.: On the notion of concept II. Artificial Intelligence 173, 167–179 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hauser, N., Kloesel, C.: The Essential Peirce, vol. 1, pp. 1867–1893. Indiana University Press, Bloomington (1992)Google Scholar
  6. 6.
    Hauser, N., Kloesel, C.: The Essential Peirce, vol. 2, pp. 1893–1913. Indiana University Press, Bloomington (1998)Google Scholar
  7. 7.
    Johnson-Laird, P.: Mental Models. Harvard University Press, Cambridge (1983)Google Scholar
  8. 8.
    Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44, 167–207 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artificial Intelligence 55, 1–60 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Rodrigues, C.T.: The method of scientific discovery in Peirce’s philosophy: Deduction, induction, and abduction. Logica Universalis 5, 127–164 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Shoham, Y.: Reasoning about change: Time and causation from the standpoint of artificial intelligence. The MIT Press, Cambridge (1988)Google Scholar
  12. 12.
    van Benthem, J.: Logic and reasoning: Do the facts matter? Studia Logica 88, 67–84 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Zhang, D., et al.: Nonmonotonic reasoning and multiple belief revision. In: Proceedings IJCAI 1997, vol. 1, pp. 95–100. Morgan Kaufmann, Los Altos (1997)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Willem Labuschagne
    • 1
  • Johannes Heidema
    • 2
  • Katarina Britz
    • 3
    • 4
  1. 1.University of OtagoDunedinNew Zealand
  2. 2.University of South AfricaPretoriaSouth Africa
  3. 3.Centre for AI ResearchCSIR Meraka InstitutePretoriaSouth Africa
  4. 4.University of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations