An Efficient Tableau for Linear Time Temporal Logic

  • Ji Bian
  • Tim French
  • Mark Reynolds
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8272)


Practical reasoning aids for dense-time temporal logics are not at all common despite a range of potential applications from verification of concurrent systems to AI. There have been recent suggestions that the temporal mosaic idea can provide implementable tableau-style decision procedures for various linear time temporal logics beyond the standard discrete natural numbers model of time. In this paper we extend the established idea of mosaic tableaux by introducing a novel abstract methodology of partiality which allows a partial mosaic to represent many mosaics. This can significantly reduce the running time of building a tableau. We present partial mosaics, partial mosaic-based tableau and algorithms for building the tableau.


dense-time temporal logic partial mosaic tableau 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bian, J.: Efficient tableaux for temporal logic. Doctoral thesis, in preparation (2013),
  3. 3.
    Bian, J.: Linear time tableaux for partial mosaic, Online solver (2013),
  4. 4.
    Burgess, J.: Axioms for tense logic I: ‘Since’ and ‘Until’. Notre Dame J. Formal Logic 23(2), 367–374 (1994)MathSciNetGoogle Scholar
  5. 5.
    Burgess, J., Gurevich, Y.: The decision problem for linear temporal logic. Notre Dame J. Formal Logic 26(2), 115–128 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hirsch, R., Hodkinson, I., Marx, M., Mikulas, S., Reynolds, M.: Mosaics and step-by-step. Remarks on “A modal logic of relations”. In: Orlowska, E. (ed.) Logic at Work: Essays Dedicated to the Memory of Helen Rasiowa. STUDFUZZ, vol. 24, pp. 158–167. Springer, Heidelberg (1999)Google Scholar
  7. 7.
    Kamp, H.: Tense logic and the theory of linear order. PhD thesis, University of California (1968)Google Scholar
  8. 8.
    Kesten, Y., Manna, Z., Pnueli, A.: Temporal verification of simulation and refinement. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993. LNCS, vol. 803, pp. 273–346. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  9. 9.
    Marx, M., Mikulas, S., Reynolds, M.: The mosaic method for temporal logics. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS (LNAI), vol. 1847, pp. 324–340. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Pnueli, A.: The temporal logic of programs. In: Proceedings of the Eighteenth Symposium on Foundations of Computer Science, pp. 46–57. Springer (1977)Google Scholar
  11. 11.
    Reynolds, M.: Dense time reasoning via mosaics. In: TIME 2009: Proceedings of the 2009 16th International Symposium on Temporal Representation and Reasoning, pp. 3–10. IEEE Computer Society (2009)Google Scholar
  12. 12.
    Reynolds, M.: The complexity of temporal logics over linear time. Journal of Studies in Logic 3, 19–50 (2010)Google Scholar
  13. 13.
    Reynolds, M.: A tableau for until and since over linear time. In: Proc. of 18th International Symposium on Temporal Representation and Reasoning (TIME 2011), Lubeck, Germany. IEEE Computer Society Press (September 2011)Google Scholar
  14. 14.
    Sistla, A., Clarke, E.: Complexity of propositional linear temporal logics. J. ACM 32, 733–749 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Yin, Z., Tambe, M.: Continuous time planning for multiagent teams with temporal constraints. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011, pp. 465–471 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Ji Bian
    • 1
  • Tim French
    • 1
  • Mark Reynolds
    • 1
  1. 1.The University of Western AustraliaCrawleyAustralia

Personalised recommendations