Advertisement

A Constructive Artificial Chemistry to Explore Open-Ended Evolution

  • Thomas J. Young
  • Kourosh Neshatian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8272)

Abstract

We introduce a simple Artificial Chemistry to provide an open-ended representation for the exploration of artificial evolution. The chemistry includes an energy model based on the conservation of total kinetic and potential energy, and a constructive reaction model where possible reactions are discovered “on-the-fly”. The implementation is built on an existing open-source cheminformatics toolkit for performance and has a feature-set that prioritises the needs of Artificial Life over fidelity to real-world chemistry, unlike many existing artificial chemistries.

Keywords

Emergence Artificial Chemistry Constructive Energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benkö, G., Flamm, C., Stadler, P.F.: A graph-based toy model of chemistry. Journal of Chemical Information and Computer Sciences 43(4), 1085–1093 (2003), http://pubs.acs.org/doi/abs/10.1021/ci0200570 pMID: 12870897 Google Scholar
  2. 2.
    Benkö, G., Flamm, C., Stadler, P.F.: The toychem package: A computational toolkit implementing a realistic artificial chemistry model (2005), http://www.tbi.univie.ac.at/~xtof/ToyChem/
  3. 3.
    Channon, A.: Unbounded evolutionary dynamics in a system of agents that actively process and transform their environment. Genetic Programming and Evolvable Machines 7(3), 253–281 (2006), doi:10.1007/s10710-006-9009-3CrossRefGoogle Scholar
  4. 4.
    Daylight Chemical Information Systems, I.: Daylight theory manual (2011), http://www.daylight.com/dayhtml/doc/theory/index.html
  5. 5.
    Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial chemistries-a review. Artificial Life 7(3), 225–275 (2001), http://www.mitpressjournals.org/doi/abs/10.1162/106454601753238636 CrossRefGoogle Scholar
  6. 6.
    Ducharme, V., Egli, R., Legault, C.Y.: Energy-based artificial chemistry simulator. In: Adami, C., Bryson, D.M., Ofria, C., Pennock, R.T. (eds.) Proceedings of the Thirteenth International Conference on the Simulation and Synthesis of Living Systems (Artificial Life 13), pp. 449–456 (2012)Google Scholar
  7. 7.
    Faulconbridge, A.: RBN-World: sub-symbolic artificial chemistry for artificial life. Ph.D. thesis, University of York (2011)Google Scholar
  8. 8.
    Fontana, W., Wagner, G.P., Buss, L.W.: Beyond digital naturalism. Artificial Life 1(2), 211–227 (1994)Google Scholar
  9. 9.
    Landrum, G.: Rdkit: Open-source cheminformatics (2013), http://www.rdkit.org
  10. 10.
    Maley, C.: Four steps toward open-ended evolution. In: GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1336–1343. Morgan Kaufmann (1999)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Thomas J. Young
    • 1
  • Kourosh Neshatian
    • 1
  1. 1.University of CanterburyChristchurchNew Zealand

Personalised recommendations