Constraint Optimization for Timetabling Problems Using a Constraint Driven Solution Model

  • Anurag Sharma
  • Dharmendra Sharma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8272)


Many science and engineering applications require finding solutions to planning and optimization problems by satisfying a set of constraints. These constraint problems (CPs) are typically NP-complete and can be formalized as constraint satisfaction problems (CSPs) or constraint optimization problems (COPs). Evolutionary algorithms (EAs) are good solvers for optimization problems ubiquitous in various problem domains. A variation of EA - Intelligent constraint handling evolutionary algorithm (ICHEA) has been demonstrated to be a versatile constraints-guided EA for all forms of continuous constrained problems in our earlier works. In this paper we investigate an incremental approach through ICHEA in solving benchmark exam timetabling problems which is a classic discrete COP and compare its performance with other well-known EAs. Incremental and exploratory search in constraint solving has shown improvement in the quality of solutions.


constraint satisfaction problems constraint optimization problems evolutionary algorithms exam timetabling problems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdullah, S., et al.: Investigating Ahuja–Orlin’s large neighbourhood search approach for examination timetabling. Spectr. 29(2), 351–372 (2006)MathSciNetGoogle Scholar
  2. 2.
    Brailsford, S.: Constraint satisfaction problems: Algorithms and applications. Eur. J. Oper. Res. 119(3), 557–581 (1999)CrossRefzbMATHGoogle Scholar
  3. 3.
    Burke, E., et al.: A Time-Predefined Local Search Approach to Exam Timetabling Problems, vol. 1153, pp. 76–90 (2003)Google Scholar
  4. 4.
    Burke, E., et al.: Hybrid Graph Heuristics within a Hyper-Heuristic Approach to Exam Timetabling Problems (2005)Google Scholar
  5. 5.
    Burke, E., Bykov, Y.: A Late Acceptance Strategy in Hill-Climbing for Exam Timetabling Problems. Presented at the PATAT 2008 Proceedings of the 7th International Conference on the Practice and Theory of Automated Timetabling (2008)Google Scholar
  6. 6.
    Burke, E.K., Newall, J.P., Weare, R.F.: A memetic algorithm for university exam timetabling. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 241–250. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  7. 7.
    Burke, E.K., et al.: Adaptive selection of heuristics for improving exam timetables. Ann. Oper. Res., 1–17 (2012)Google Scholar
  8. 8.
    Burke, E.K., et al.: Hybrid variable neighbourhood approaches to university exam time-tabling. Eur. J. Oper. Res. 206(1), 46–53 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Caramia, M., Dell’Olmo, P., Italiano, G.F.: New Algorithms for Examination Timetabling. In: Näher, S., Wagner, D. (eds.) WAE 2000. LNCS, vol. 1982, pp. 230–241. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Carter, M.W., et al.: Examination Timetabling: Algorithmic Strategies and Applications. J. Oper. Res. Soc. 47(3), 373 (1996)Google Scholar
  11. 11.
    Casey, S., Thompson, J.: GRASPing the Examination Scheduling Problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 232–244. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Craenen, B.G.W., et al.: Comparing evolutionary algorithms on binary constraint satisfaction problems. IEEE Trans. Evol. Comput. 7(5), 424–444 (2003)CrossRefGoogle Scholar
  13. 13.
    Craenen, B.G.W.: Solving constraint satisfaction problems with evolutionary algorithms. Phd Dissertation, Vrije Universiteit (2005)Google Scholar
  14. 14.
    Demeester, P., et al.: A hyperheuristic approach to examination timetabling problems: benchmarks and a new problem from practice. J. Sched. 15(1), 83–103 (2012)CrossRefGoogle Scholar
  15. 15.
    Eley, M.: Ant algorithms for the exam timetabling problem. In: Burke, E.K., Rudová, H. (eds.) PATAT 2007. LNCS, vol. 3867, pp. 364–382. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Merlot, L.T.G., Boland, N., Hughes, B.D., Stuckey, P.J.: A Hybrid Algorithm for the Examination Timetabling Problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 207–231. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Müller, T.: Constraint-based Timetabling. PhD Dissertation, Charles University (2005)Google Scholar
  18. 18.
    Qu, R., et al.: A survey of search methodologies and automated system development for examination timetabling. J. Sched. 12(1), 55–89 (2008)CrossRefGoogle Scholar
  19. 19.
    Shang, Y., Fromherz, M.P.J.: Experimental complexity analysis of continuous constraint satisfaction problems. Inf. Sci. 153, 1–36 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sharma, A., Sharma, D.: ICHEA for Discrete Constraint Satisfaction Problems. In: Thielscher, M., Zhang, D. (eds.) AI 2012. LNCS, vol. 7691, pp. 242–253. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Sharma, A., Sharma, D.: Solving Dynamic Constraint Optimization Problems Using ICHEA. In: Huang, T., Zeng, Z., Li, C., Leung, C.S., et al. (eds.) ICONIP 2012, Part III. LNCS, vol. 7665, pp. 434–444. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Yang, Y., Petrovic, S.: A Novel Similarity Measure for Heuristic Selection in Examination Timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 247–269. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Benchmark Exam Timetabling Datasets,

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Anurag Sharma
    • 1
  • Dharmendra Sharma
    • 1
  1. 1.Information Technology and EngineeringUniversity of CanberraAustralia

Personalised recommendations