Advertisement

A New Efficient In Situ Sampling Model for Heuristic Selection in Optimal Search

  • Santiago Franco
  • Michael W. Barley
  • Patricia J. Riddle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8272)

Abstract

Techniques exist that enable problem-solvers to automatically generate an almost unlimited number of heuristics for any given problem. Since they are generated for a specific problem, the cost of selecting a heuristic must be included in the cost of solving the problem. This involves a tradeoff between the cost of selecting the heuristic and the benefits of using that specific heuristic over using a default heuristic. The question we investigate in this paper is how many heuristics can we handle when selecting from a large number of heuristics and still have the benefits outweigh the costs. The techniques we present in this paper allow our system to handle several million candidate heuristics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    López, C.L., Junghanns, A.: Perimeter Search Performance. In: Schaeffer, J., Müller, M., Björnsson, Y. (eds.) CG 2002. LNCS, vol. 2883, pp. 345–359. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Korf, R.E., Reid, M., Edelkamp, S.: Time complexity of iterative-deepening-A*. Artificial Intelligence 129(1-2), 199–218 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Zahavi, U., Felner, A., Burch, N., Holte, R.C.: Predicting the performance of IDA* with conditional distributions. In: Fox, D., Gomes, C.P. (eds.) AAAI Conference on Artificial Intelligence (AAAI 2008), pp. 381–386. AAAI Press (2008)Google Scholar
  4. 4.
    Zahavi, U., Felner, A., Schaeffer, J., Sturtevant, N.R.: Inconsistent heuristics. In: AAAI Conference on Artificial Intelligence (AAAI 2007), pp. 1211–1216 (2007)Google Scholar
  5. 5.
    Domshlak, C., Karpas, E., Markovitch, S.: To max or not to max: Online learning for speeding up optimal planning. In: AAAI Conference on Artificial Intelligence (AAAI 2010), pp. 1701–1706 (2010)Google Scholar
  6. 6.
    Tolpin, D., Beja, T., Shimony, S.E., Felner, A., Karpas, E.: Towards rational deployment of multiple heuristics in a*. CoRR abs/1305.5030 (2013)Google Scholar
  7. 7.
    Haslum, P., Botea, A., Helmert, M., Bonet, B., Koenig, S.: Domain-independent construction of pattern database heuristics for cost-optimal planning. In: AAAI Conference on Artificial Intelligence (AAAI-2007), vol. 22(2), p. 1007. AAAI Press, MIT Press, Menlo Park, Cambridge (2007)Google Scholar
  8. 8.
    Helmert, M., Haslum, P., Hoffmann, J.: Flexible abstraction heuristics for optimal sequential planning. In: Proceedings ICAPS 2007, pp. 176–183 (2007)Google Scholar
  9. 9.
    Felner, A., Korf, R.E., Hanan, S.: Additive pattern database heuristics. Journal of Artificial Intelligence Research (JAIR) 22, 279–318 (2004)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Santiago Franco
    • 1
  • Michael W. Barley
    • 1
  • Patricia J. Riddle
    • 1
  1. 1.Department of Computer ScienceUniversity of AucklandNew Zealand

Personalised recommendations