Learning User’s Characteristics in Collaborative Filtering through Genetic Algorithms: Some New Results

Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 312)


This work presents an alternative approach (Genetic Algorithms approach) to traditional treatment of Recommender Systems (RSs). The work examines genetic algorithms possibilities to offer adaptive characteristics to these systems trough learning. The main goal, in addition to give a general view about RSs capabilities and possibilities, it is to provide a new example mechanism for to extend RSs learning capabilities (from user’s personal characteristics), with the purpose of improve the effectiveness at time of to find recommendations and appropriate suggestions for particular individuals.


Recommender Systems Genetic Algorithms User-Adapted Interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arrow, K.J.: Social Choice and Individual Values, 2nd edn. Yale University Press (1963)Google Scholar
  2. 2.
    Bentley, P.J., Corne, D.W.: Creative Evolutionary Systems. Morgan Kaufman Pub. (2001)Google Scholar
  3. 3.
    Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowledge-Based Systems 46, 109–132 (2013)CrossRefGoogle Scholar
  4. 4.
    Boumaza, A., Brun, A.: From neighbors to global neighbors in collaborative filtering: an evolutionary optimization approach. In: Soule, T. (ed.) Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference (GECCO 2012), pp. 345–352. ACM, New York (2012)CrossRefGoogle Scholar
  5. 5.
    Breese, J., Heckermen, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. Technical report, Microsoft Research (October 1998)Google Scholar
  6. 6.
    Chesani, F.: Recommendation Systems. Curso de verano en Ingeniería Informática (1992)Google Scholar
  7. 7.
    Chislenko, A., et al.: US Patent 6092049: Method and apparatus for efficiently recommending items using automated collaborative filtering and feature-guided automated collaborative filtering (2000)Google Scholar
  8. 8.
    Clerkin, P., Hayes, C., Cunningham, P.: Automated Case Generation for Recommender Systems Using Knowledge Discovery Techniques Trinity College DublinGoogle Scholar
  9. 9.
    Delgado, J.A. (2000). Agent-Based Information Filtering and Recommender Systems on the Internet. Instituto Tecnológico de Nagoya. Tesis PhD (2000)Google Scholar
  10. 10.
    Eshelman, L.J.: The CHC adaptive search algorithm: How to have safe search when engaging in non-traditional genetic recombination. Foundations of Genetic Algorithms (1991) Google Scholar
  11. 11.
    Geyer-Schulz, A., Hahsler, M., Jahn, M.: myVU: A Next Generation Recommender System Based on Observed Consumer Behavior and Interactive Evolutionary Algorithms. In: Gaul, W., Opitz, O., Schader, M. (eds.) Analisis de Datos – Scientific Modeling and Practical Applications, Studies in Classification, Data Analysis, and Knowledge Organization (2000)Google Scholar
  12. 12.
    Goldberg, D., Nichols, D., Oki, B., Terry, D.: Using collaborative filtering to weave an information tapestry. ACM (1992)Google Scholar
  13. 13.
    Goldberg, K., Roeder, T., Gupta, D., Perkins, C., Eigentaste, C.: A Constant Time Collaborative Filtering Algorithm. Universidad de California, Berkeley (2000)Google Scholar
  14. 14.
    Herlocker, J., Konstan, J., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: SIGIR. ACM (1999)Google Scholar
  15. 15.
    Hey, J.: System and method of predicting subjective reactions. US Patent 4870579 (1989)Google Scholar
  16. 16.
    Hu, L., Cao, J., Xu, G., Cao, L., Gu, Z., Zhu, C.: Personalized recommendation via cross-domain triadic factorization. In: Proceedings of the 22nd International Conference on World Wide Web (WWW 2013), pp. 595–606. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva (2013)Google Scholar
  17. 17.
    Kim, H.-T., Lee, J.-H., Wook Ahn, C.: A recommender system based on interactive evolutionary computation with data grouping. Procedia Computer Science 3, 611–616 (2011)CrossRefGoogle Scholar
  18. 18.
    Konstan, J.A., Bharat, K.: Integrated personal and community recommendations in collaborative filtering. In: CSCW Workshop. ACM, Boston (1996)Google Scholar
  19. 19.
    Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., Riedl, J.: GroupLens: Applying collaborative filtering to usenet news. Communications of the ACM 40(3), 77–87Google Scholar
  20. 20.
    Michalski, R.S.: Learnable Evolution Model: Evolutionary Process Guided by Machine Learning. Machine Learning 38, 9–40 (2000)CrossRefMATHGoogle Scholar
  21. 21.
    Min Tjoa, A., Höfferer, M., Ehrentraut, G., Untersmayr, P.: Applying Evolutionary Algorithms to the Problem of Information Filtering. In: DEXA Workshop, pp. 450–458 (1997)Google Scholar
  22. 22.
    Moukas, A., Maes, P.: Amalthaea: an evolving multi-agent information filtering and discovery system for the WWW. In: Autonomous Agents and Multi-agent Systems, pp. 59–88 (1998)Google Scholar
  23. 23.
    Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: An open architecture for collaborative filtering of netnews. In: Proceedings of the ACM Conference on Computer Supported Cooperative Work (1994)Google Scholar
  24. 24.
    Pennock, D.M., Horvitz, E.: Analysis of the axiomatic foundations of collaborative filtering. In: Taller AAAI sobre Inteligencia Artificial para Comercio Electrónico, Conferencia Nacional Sobre IA. Universidad de Stanford, California (1999)Google Scholar
  25. 25.
    Pennock, D.M., Horvitz, E.: Collaborative filtering by personality diagnosis: A hybrid memory- and model-based approach. In: IJCAI Workshop on Machine Learning for Information Filtering, Stockholm, Sweden (August 1999)Google Scholar
  26. 26.
    Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.): Recommender Systems Handbook. Springer (2011)Google Scholar
  27. 27.
    Rich, E.: User modeling via stereotypes. Cognitive Science (1979)Google Scholar
  28. 28.
    Salehi, M., Pourzaferani, M., Razavi, S.: Hybrid attribute-based recommender system for learning material using genetic algorithm and a multidimensional information model. Egyptian Informatics Journal 14(1), 67–78 (2013)CrossRefGoogle Scholar
  29. 29.
    Shardanand, U., Maes, P.: Social information filtering: Algorithms for automating word of mouth. In: ACM Conference on Computer Human Interaction, CHI (1995)Google Scholar
  30. 30.
    Sheth, B., Maes, P.: Evolving agents for personalized information filtering. In: Artificial Intelligence for Applications Conference, USA, pp. 345–352 (1993)Google Scholar
  31. 31.
    Ujjin, S., Bentley, P.: Learning User Preferences Using Evolution. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution And Learning (SEAL 2002), Singapore (2002)Google Scholar
  32. 32.
    Varian, H., Resnick, P.: Special issue on CF and Recommender Systems. Communications of the ACM 40(3)Google Scholar
  33. 33.
    Velez-Langs, O.E., Santos, C.: Sistemas Recomendadores: Un Enfoque Desde Los Algoritmos Genéticos. Revista Industrial Data 9(1), 23–31 (2006) (in Spanish)Google Scholar
  34. 34.
    Alcazar, J., Velez-Langs, O., Salah, J.: Algoritmos Genéticos como Herramientas de Aprendizaje de Características de Usuario en Sistemas Recomendadores. In: Actas del VI Congreso Español de Metaheurísticas, Algoritmos Evolutivos y Bio-inspirados 2009, Malaga, Spain, Febrero 11-13 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Departamento de IngenieríasUniversidad de Bogotá, Jorge Tadeo LozanoBogotáColombia
  2. 2.Facultad de InformáticaUniversidad Politécnica de MadridMadridSpain

Personalised recommendations