Advertisement

Towards Incremental A-r-Star

  • Daniel Opoku
  • Abdollah Homaifar
  • Edward W. Tunstel
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 312)

Abstract

Graph search based path planning is popular in mobile robot applications and video game programming. Previously, we developed the A-r-Star pathfinder, a suboptimal variant of the A-Star pathfinder with performance that scales linearly with increasing the resolution (size) and hence sparseness of the grid map of a given continuous world. This paper presents the study of the direct acyclic graph (tree structure) formed by the A-r-Star and outlines steps to developing an incremental version of the A-r-Star. The incremental version of A-r-Star is able to replan faster using information from previous searches to speed up subsequent searches.

Keywords

Graph and tree search strategies Heuristic methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Noykov, S., Roumenin, C.: Occupancy grids building by sonar and mobile robot. Robot. Auton. Syst. 55(2), 162–175 (2007)CrossRefGoogle Scholar
  2. 2.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics 4(2), 100–107 (1968)CrossRefGoogle Scholar
  3. 3.
    Stentz, A.: Optimal and efficient path planning for partially-known environments. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation (1994)Google Scholar
  4. 4.
    Koenig, S., Likhachev, M.: D*lite. In: Eighteenth National Conference on Artificial Intelligence 2002, pp. 476–483. American Association for Artificial Intelligence, Edmonton (2002)Google Scholar
  5. 5.
    Koenig, S., Likhachev, M., Furcy, D.: Lifelong planning A*. Artif. Intell. 155(1-2), 93–146 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Opoku, D., Homaifar, A., Tunstel, E.: The A-r-Star (Ar*) Pathfinder. International Journal of Computer Applications, 32–44 (2013)Google Scholar
  7. 7.
    Stentz, A.: Optimal and Efficient Path Planning for Unknown and Dynamic Environments. International Journal of Robotics & Automation 10(3), 89–100 (1995)Google Scholar
  8. 8.
    Schroeder, W.J., Zarge, J.A., Lorensen, W.E.: Decimation of triangle meshes. SIGGRAPH Computer Graph. 26(2), 65–70 (1992)CrossRefGoogle Scholar
  9. 9.
    Huang, C.T., Mitchell, O.R.: A Euclidean distance transform using grayscale morphology decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(4), 443–448 (1994)CrossRefGoogle Scholar
  10. 10.
    Matsumoto, Y., Ino, T., Ogasawara, T.: Development of intelligent wheelchair system with face and gaze based interface. In: Proceedings of the Robot and Human Communication, pp. 262–267 (2001)Google Scholar
  11. 11.
    SungHwan, A., et al.: On-board odometry estimation for 3D vision-based SLAM of hu-manoid robot. In: International Conference on Intelligent Robots and Systems (IROS) (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Daniel Opoku
    • 1
  • Abdollah Homaifar
    • 1
  • Edward W. Tunstel
    • 2
  1. 1.Electrical and Computer Engineering DepartmentNorth Carolina A & T State UniversityGreensboroUSA
  2. 2.Applied Physics LaboratoryJohns Hopkins UniversityLaurelUSA

Personalised recommendations