Preliminary Results on a New Fuzzy Cognitive Map Structure

  • John T. Rickard
  • Janet Aisbett
  • Ronald R. Yager
  • Greg Gibbon
Conference paper
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 312)

Abstract

We introduce a new structure for fuzzy cognitive maps (FCM) where the traditional fan-in structure involving an inner product followed by a squashing function to describe the causal influences of antecedent nodes to a particular consequent node is replaced with a weighted mean type operator. In this paper, we employ the weighted power mean (WPM). Through appropriate selection of the weights and exponents in the WPM operators, we can both account for the relative importance of different antecedent nodes in the dynamics of a particular node, as well as take a perspective ranging continuously from the most pessimistic (minimum) to the most optimistic (maximum) on the normalized aggregation of antecedents for each node. We consider this FCM structure to be more intuitive than the traditional one, as the nonlinearity involved in the WPM is more scrutable with regard to the aggregation of its inputs. We provide examples of this new FCM structure to illustrate its behavior, including convergence.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kosko, B.: Fuzzy cognitive maps. Int. J. Man-Mach. Stud. 24(1), 65–75 (1986)CrossRefMATHGoogle Scholar
  2. 2.
    Kosko, B.: Fuzzy Engineering. Prentice-Hall, Englewood Cliffs (1997)MATHGoogle Scholar
  3. 3.
    Glykas, M. (ed.): Fuzzy Cognitive Maps. STUDFUZZ, vol. 247. Springer, Heidelberg (2010)MATHGoogle Scholar
  4. 4.
    Papageorgiou, E.I., Salmeron, J.L.: A review of fuzzy cognitive maps research during the last decade. IEEE Trans. Fuzzy Syst. 21(1), 66–79 (2013)CrossRefGoogle Scholar
  5. 5.
    Boutalis, Y., Kottas, T.L., Christodoulou, M.: Adaptive estimation of fuzzy cognitive maps with proven stability and parameter convergence. IEEE Trans. Fuzzy Syst. 17(4), 874–889 (2009)CrossRefGoogle Scholar
  6. 6.
    Yager, R.R.: A general approach to criteria aggregation using fuzzy measures. International J. Man-Machine Studies 38, 187–213 (1993)CrossRefGoogle Scholar
  7. 7.
    Yager, R.R.: On mean type aggregation. IEEE Trans. Systems, Man, Cybernetics—Part B: Cybernetics 26, 209–221 (1996)CrossRefGoogle Scholar
  8. 8.
    Dujmović, J., Larsen, H.L.: Generalized conjunction/disjunction. J. Approximate Reasoning 46, 423–446 (2007)CrossRefMATHGoogle Scholar
  9. 9.
    Dujmović, J.: Continuous preference logic for system evaluation. IEEE Trans. Fuzzy Syst. 15(6), 1082–1099 (2007)CrossRefGoogle Scholar
  10. 10.
    Rickard, J.T., Aisbett, J., Yager, R.R., Gibbon, G.: Fuzzy weighted power means in evaluation decisions. In: Proc. 1st World Symposium on Soft Computing, Paper #100, San Francisco, CA (2010)Google Scholar
  11. 11.
    Rickard, J.T., Aisbett, J., Yager, R.R., Gibbon, G.: Linguistic weighted power means: comparison with the linguistic weighted average. In: Proc. FUZZ-IEEE 2011, 2011 World Congress on Computational Intelligence, Taipei, Taiwan, pp. 2185–2192 (2011)Google Scholar
  12. 12.
    Mendel, J.M., Wu, D.: Perceptual Computing. John Wiley & Sons, Hoboken (2010)CrossRefGoogle Scholar
  13. 13.
    Rickard, J.T., Yager, R.R.: Perceptual computing in social networks. In: Proc. 2013 International Fuzzy Systems Association World Congress/North American Fuzzy Information Processing Society Annual Mtg. Paper #9, Edmonton, Alberta, Canada (2013)Google Scholar
  14. 14.
    Rickard, J.T., Aisbett, J.: New classes of threshold aggregation functions based upon the Tsallis q-exponential. In: Rickard, J.T., Aisbett, J. (eds.) 2013 International Fuzzy Systems Association World Congress/North American Fuzzy Information Processing Society Annual Mtg, paper #8, Edmonton, AB, Canada (2013)Google Scholar
  15. 15.
    Rickard, J.T., Aisbett, J.: New classes of threshold aggregation functions based upon the Tsallis q-exponential with applications to perceptual computing. IEEE Trans. on Fuzzy Syst. (accepted for publication, 2013)Google Scholar
  16. 16.
    Meyer, C.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia (2001)Google Scholar
  17. 17.
    Gantmacher, F.R.: Theory of Matrices, Vol. 2. AMS Chelsea Publishing, Providence, RI (1989), http://bookos.org/g/F.%20R.%20Gantmacher
  18. 18.
    Encyclopedia of Mathematics entry under “Stochastic matrix”, http://www.encyclopediaofmath.org/index.php/Stochastic_matrix

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • John T. Rickard
    • 1
  • Janet Aisbett
    • 2
  • Ronald R. Yager
    • 3
  • Greg Gibbon
    • 2
  1. 1.Distributed Infinity, Inc.LarkspurUSA
  2. 2.The University of NewcastleCallaghanAustralia
  3. 3.Machine Intelligence InstituteIona CollegeNew RochelleUSA

Personalised recommendations