Skip to main content

A Unifying Framework for TDC Architectures

  • Chapter
  • First Online:
Noise-Shaping All-Digital Phase-Locked Loops

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 2715 Accesses

Abstract

A TDC is an analog-to-digital converter that converts the duration of a time interval to a digital word [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Time-to-Digital Converters \(x\) is the duration of a time interval. Therefore, in a TDC, the difference between two consecutive values of \(th(k)\) is the time resolution.

  2. 2.

    A flash TDC performs comparisons with all quantization levels simultaneously in time. A TDC also compares to all levels but does it sequentially in time.

  3. 3.

    In a Vernier TDC, \(res_A (m)\) and \(res_B (k)\) are the time resolutions.

  4. 4.

    In a Vernier TDC, \(res_{An}\) and \(res_{Bn}\) are the nominal time resolutions.

References

  1. J. Kalisz, “Review of Methods for Time Interval Measurements with Picosecond Resolution,” Metrologia, vol. 41, no. 1, pp. 1732, Feb. 2004.

    Google Scholar 

  2. Maxim, “Understanding Flash ADCs,” Application Note 810, Sep. 2010.

    Google Scholar 

  3. R. B. Staszewski, S. Vemulapalli, P. Vallur, J. Wallberg, P. T. Balsara, “1.3 V 20 ps Time-to-Digital Converter for Frequency Synthesis in 90-nm CMOS,” IEEE Trans. Circuits and Sys. II: Express Briefs, vol. 53, no. 3, Mar. 2006.

    Google Scholar 

  4. M. Terabe, A. Sekiya, T. Yamada, and A. Fujimaki, “Timing Jitter Measurement in Single-Flux-Quantum Circuits Based on Time-to-Digital Converters With High Time-Resolution,” IEEE Trans. Applied Superconductivity, vol. 17, no. 2, Jun. 2007.

    Google Scholar 

  5. A. S. Yousif, J. W. Haslett, “A Fine Resolution TDC Architecture for Next Generation PET Imaging,” IEEE Trans. Nuclear Science, vol. 54, no. 5, Oct. 2007.

    Google Scholar 

  6. M. Lee, A. A. Abidi, “A 9 b, 1.25 ps Resolution Coarse-Fine Time-to-Digital Converter in 90 nm CMOS that Amplifies a Time Residue” IEEE J. of Solid-State Circuits, vol. 43, no. 4, Apr. 2008.

    Google Scholar 

  7. M. Lee, M. E. Heidari, A. A. Abidi, “A Low-Noise Wideband Digital Phase-Locked Loop Based on a CoarseFine Time-to-Digital Converter With Subpicosecond Resolution,” IEEE J. Solid-State Circuits, vol. 44, no. 10, Oct. 2009.

    Google Scholar 

  8. J. Wang, S. Liu, Q. Shen, H. Li, Q. An, “A Fully Fledged TDC Implemented in Field-Programmable Gate Arrays,” IEEE Trans. Nuclear Science, vol. 57, no. 2, Apr. 2010.

    Google Scholar 

  9. P. Chen, C.-C. Chen, Y.-S. Shen, “A Low-Cost Low-Power CMOS Time-to-Digital Converter Based on Pulse Stretching,” IEEE Trans. Nuclear Science, vol. 53, no. 4, Aug. 2006.

    Google Scholar 

  10. J. Song, Q. An, S. Liu, “A High-Resolution Time-to-Digital Converter Implemented in Field-Programmable-Gate-Arrays,” IEEE Trans. Nuclear Science, vol. 53, no. 1, Feb. 2006.

    Google Scholar 

  11. J.-P. Jansson, A. Mantyniemi, J. Kostamovaara, “A CMOS Time-to-Digital Converter With Better Than 10 ps Single-Shot Precision,”IEEE J. Solid-State Circ., vol. 41, no. 6, Jun. 2006.

    Google Scholar 

  12. J. Nissinen, I. Nissinen, J. Kostamovaara, “Integrated Receiver Including Both Receiver Channel and TDC for a Pulsed Time-of-Flight Laser Rangefinder With cm-Level Accuracy,” IEEE J. Solid-State Circuits, vol. 44, no. 5, May 2009.

    Google Scholar 

  13. J.-P. Jansson, A. Mntyniemi, J. Kostamovaara, “Synchronization in a Multilevel CMOS Time-to-Digital Converter,” IEEE Trans. Circuits Sys. I: Regular Papers, vol. 56, no. 8, Aug. 2009.

    Google Scholar 

  14. Encyclopaedia Britannica Online “Vernier Caliper”. Available at http://www.britannica.com/EBchecked/topic/626328/vernier-caliper

  15. K. Nose, M. Kajita, M. Mizuno, “A 1-ps Resolution Jitter-Measurement Macro Using Interpolated Jitter Oversampling,” IEEE J. Solid-State Circuits, vol. 41, no. 12, Dec. 2006.

    Google Scholar 

  16. S. Henzler, S. Koeppe, D. Lorenz, W. Kamp, R. Kuenemund, D. Schmitt-Landsiedel, “A Local Passive Time Interpolation Concept for Variation-Tolerant High-Resolution Time-to-Digital Conversion,” IEEE J. Solid-State Circuits, vol. 43, no. 7, Jul. 2008.

    Google Scholar 

  17. E. Temporiti, C. Weltin-Wu, D. Baldi, R. Tonietto, F. Svelto, “A 3 GHz Fractional All-Digital PLL With a 1.8 MHz Bandwidth Implementing Spur Reduction Techniques,” IEEE J. Solid-State Circuits, vol. 44, no. 3, Mar. 2009.

    Google Scholar 

  18. A. M. Amiri, M. Boukadoum, A. Khouas, “A Multihit Time-to-Digital Converter Architecture on FPGA,” IEEE Trans. Instrum. Meas., vol. 58, no. 3, Mar. 2009.

    Google Scholar 

  19. N. Xing, W.-Y. Shin, D.-K. Jeong and S. Kim, “High-resolution time-to-digital converter utilising fractional difference conversion scheme,” Electronics Letters, vol. 46 no. 6, Mar. 2010.

    Google Scholar 

  20. R. Rashidzadeh, M. Ahmadi, W. C. Miller, “An All-Digital Self-Calibration Method for a Vernier-Based Time-to-Digital Converter,” IEEE Trans. Instrum. Meas., vol. 59, no. 2, Feb. 2010.

    Google Scholar 

  21. L. Vercesi, A. Liscidini, R. Castello, “Two-Dimensions Vernier Time-to-Digital Converter,” IEEE J. Solid-State Circuits, vol. 45, no. 8, Aug. 2010.

    Google Scholar 

  22. P. Chen, C.-C. Chen, J.-C. Zheng, Y.-S. Shen, “A PVT Insensitive Vernier-Based Time-to-Digital Converter With Extended Input Range and High Accuracy,” IEEE Trans. Nuclear Science, vol. 54, no. 2, Apr. 2007.

    Google Scholar 

  23. A. K. M. K. Mollah, R. Rosales, S. Tabatabaei, J. Cicalo, A. Ivanov, “Design of a Tunable Differential Ring Oscillator With Short Start-Up and Switching Transients,” IEEE Trans. Circuits Sys. I: Regular Papers, vol. 54, no. 12, Dec. 2007.

    Google Scholar 

  24. S. S. Junnarkar, P. OConnor, P. Vaska, R. Fontaine, “FPGA-Based Self-Calibrating Time-to-Digital Converter for Time-of-Flight Experiments,” IEEE Trans. Nuclear Science, vol. 56, no. 4, Aug. 2009.

    Google Scholar 

  25. J. Yu, F. F. Dai, R. C. Jaeger, “A 12-Bit Vernier Ring Time-to-Digital Converter in 0.13 \(\mu \) m CMOS Technology,” IEEE J. Solid-State Circuits, vol. 45, no. 4, Apr. 2010.

    Google Scholar 

  26. P. Chen, P.-Y. Chen, J.-S. Lai, Y.-J. Chen, “FPGA Vernier Digital-to-Time ConverterWith 1.58 ps Resolution and 59.3 Minutes Operation Range,” IEEE Trans. Circuits Sys. I: Regular Paper, vol. 57, no. 6, Jun. 2010.

    Google Scholar 

  27. C.-C. Chen, P. Chen, C.-S. Hwang, W. Chang, “A Precise Cyclic CMOS Time-to-Digital Converter With Low Thermal Sensitivity,” IEEE Trans. Nuclear Science, vol. 52, no. 4, Aug. 2005.

    Google Scholar 

  28. P. Chen, S.-I. Liu, and Jingshown Wu, “A CMOS Pulse-Shrinking Delay Element For Time Interval Measurement” IEEE Trans. Circuits Sys. II: Analog and Digital Signal Processing, VOL. 47, NO. 9, Sep. 2000.

    Google Scholar 

  29. K. Karadamoglou, N. P. Paschalidis, E. Sarris, N. Stamatopoulos, G. Kottaras, V. Paschalidis, “An 11-bit High-Resolution and Adjustable-Range CMOS Time-to-Digital Converter for Space Science Instruments” IEEE J. Solid-State Circuits, vol. 39, no. 1, Jan. 2004.

    Google Scholar 

  30. Y. Liu, U. Vollenbruch, Y. Chen, C. Wicpalek, L. Maurer, Z. Boos, R. Weigel, “Multi-stage Pulse Shrinking Time-to-Digital Converter for Time Interval Measurements,” Proceedings of the 10th European Conference on Wireless Technology (ECWT 2007) pp. 347–350.

    Google Scholar 

  31. R. Szplet, K. Klepacki, “An FPGA-Integrated Time-to-Digital Converter Based on Two-Stage Pulse Shrinking,” IEEE Trans. Instrum. Meas., vol. 59, no. 6, Jun. 2010.

    Google Scholar 

  32. M. Z. Straayer, M. H. Perrott, “A Multi-Path Gated Ring Oscillator TDC With First-Order Noise Shaping,” IEEE J. Solid-State Circuits, vol. 44, no. 4, Apr. 2009.

    Google Scholar 

  33. Y. Cao, P. Leroux, W. De Cock, M. Steyaert “A 1.7mW 11b 1-1-1 MASH \(\varDelta \Sigma \) Time-to-Digital Converter” Solid-State Circuits Conference Digest of Technical Papers (ISSCC 2011), pp. 480–482, Feb. 2011.

    Google Scholar 

  34. P. Lu, A. Liscidini, P. Andreani “A 3.6 mW, 90 nm CMOS Gated-Vernier Time-to-Digital Converter With an Equivalent Resolution of 3.2 ps” IEEE J. Solid-State Circuits, vol. 99, May. 2012.

    Google Scholar 

  35. S. Haykin, B. Van Veen, “Signals and Systems,” Second Edition, John Wiley & Sons, Inc., 2003.

    Google Scholar 

  36. R. Schreier, G. C. Temes, “Understanding Delta-Sigma Data Converters”, IEEE Press, John Wiley & Sons, Inc., 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Brandonisio .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brandonisio, F., Kennedy, M.P. (2014). A Unifying Framework for TDC Architectures. In: Noise-Shaping All-Digital Phase-Locked Loops. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-03659-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03659-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03658-8

  • Online ISBN: 978-3-319-03659-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics