Advertisement

Adaptive Self-triggered Control for Remote Operation of Wifi Linked Robots

  • Carlos Santos
  • Manuel Mazo
  • Enrique Santiso
  • Felipe Espinosa
  • Miguel Martínez
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 253)

Abstract

In this paper the authors deal with the problem of variable channel delays in a tele-robotics context. Considering the effect of time-varying network delays, a novel self-triggered strategy has been designed to adjust the triggering condition to the observed tracking error. This adaptive self-triggered approach has been implemented on the trajectory tracking of two P3-DX mobile robots remotely controlled through the widespread WLAN IEEE 802.11g standard. Taking into account the maximum channel delay, results show that this solution achieves a good tracking performance with a high reduction of the network occupancy.

Keywords

Adaptive self-triggered control Network control systems Variable network delays Tele-robotics Wifi Network (IEEE 802.11g) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cogill, R.: Event-based control using quadratic approximate value functions. In: Proceedings of the 48th IEEE Conference on Decision and Control, pp. 5883–5888 (December 2009)Google Scholar
  2. 2.
    Mazo Jr., M., Anta, A., Tabuada, P.: On self-triggered control for linear systems: Guarantees and complexity. In: European Control Conference (2009)Google Scholar
  3. 3.
    Mazo Jr., M., Anta, A., Tabuada, P.: An ISS self-triggered implementation of linear controller. Automatica 46(8), 1310–1314 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Transactions on Automatic Control 52(9), 1680–1685 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Wang, X., Lemmon, M.: Event design in event-triggered feedback control systems. In: 47th IEEE Conference on Decision and Control, pp. 2105–2110 (December 2008)Google Scholar
  6. 6.
    Xue, Y., Liu, K.: Controller design for variable-sampling networked control systems with dynamic output feedback. In: 7th World Congress on Intelligent Control and Automation, WCICA, pp. 6391–6396 (June 2008)Google Scholar
  7. 7.
    Espinosa, F., Salazar, M., Pizarro, D., Valdés, F.: Electronics proposal for telerobotics operation of P3-DX units. In: Remote and Telerobotics, pp. 1–16. Intech (2010)Google Scholar
  8. 8.
    Bocos, A., Espinosa, F., Salazar, M., Valdés, F.: Compensation of channel packet dropout based on TVKF optimal estimator for robotics teleoperation. In: International Conference on Robotics and Automation, ICRA (2008)Google Scholar
  9. 9.
    Espinosa, F., Salazar, M., Valdés, F., Bocos, A.: Communication architecture based on player/stage and sockets for cooperative guidance of robotic units. In: 16th Mediterranean Conference on Control and Automation, pp. 1423–1428 (June 2008)Google Scholar
  10. 10.
    Espinosa, F., Santos, C., Marrón-Romera, M., Pizarro, D., Valdés, F., Dongil, J.: Odometry and laser scanner fusion based on a discrete extended kalman filter for robotic platooning guidance. Sensors 11(9), 8339–8357 (2011)CrossRefGoogle Scholar
  11. 11.
    Gǿmez, J.V., Lumbier, A., Garrido, S., Moreno, L.: Planning robot formations with fast marching square including uncertainty conditions. Robotics and Autonomous Systems 61(2), 137–152 (2013)Google Scholar
  12. 12.
    Santos, C., Espinosa, F., Pizarro, D., Valdés, F., Santiso, E., Díaz, I.: Fuzzy decentralized control for guidance of a convoy of robots in non-linear trajectories. In: IEEE Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8 (September 2010)Google Scholar
  13. 13.
    Valdés, F., Iglesias, R., Espinosa, F., RodríGuez, M.A., QuintíA, P., Santos, C.: Implementation of robot routing approaches for convoy merging manoeuvres. Robot. Auton. Syst. 60(11), 1389–1399 (2012)CrossRefGoogle Scholar
  14. 14.
    Lee, J.-S., Su, Y.-W., Shen, C.-C.: A comparative study of wireless protocols: Bluetooth, uwb, zigbee, and wi-fi. In: 33rd Annual Conference of the IEEE Industrial Electronics Society, IECON 2007, pp. 46–51 (2007)Google Scholar
  15. 15.
    Santos, C., Mazo, M., Espinosa, F.: Adaptive self-triggered control of a remotely operated robot. Advances in Autonomous Robotics, 61–72 (2012)Google Scholar
  16. 16.
    Antsaklis, P., Michel, A.N.: Linear Systems. McGraw-Hill (1997)Google Scholar
  17. 17.
    Zhang, J., Johansson, K.H., Lygeros, J., Sastry, S.S.: Dynamical systems revisited: Hybrid systems with Zeno executions. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 451–464. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Duton, K., Thompson, S., Barraclough, B.: The art of control engineering. Addison-Wesley (1997)Google Scholar
  19. 19.
    Araujo, J., Mazo Jr., M., Anta, A., Tabuada, P., Johansson, K.: System architectures, protocols and algorithms for aperiodic wireless control systems. IEEE Transactions on Industrial Informatics (2012)Google Scholar
  20. 20.
    Levine, W.: The control handbook. IEEE-Press (1996)Google Scholar
  21. 21.
    Garcia, E., Antsaklis, P.: Model-based event-triggered control with time-varying network delays. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 1650–1655 (December 2011)Google Scholar
  22. 22.
    Meng, X., Chen, T.: Event-based stabilization over networks with transmission delays. J. Control Sci. Eng. 2012, 2:2–2:2 (2012)Google Scholar
  23. 23.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Carlos Santos
    • 1
  • Manuel Mazo
    • 1
  • Enrique Santiso
    • 1
  • Felipe Espinosa
    • 1
  • Miguel Martínez
    • 1
  1. 1.Electronics DepartmentUniversity of AlcalaAlcalá de HenaresSpain

Personalised recommendations