Skip to main content

A Graph Based Methodology for Volumetric Left Ventricle Segmentation

  • Conference paper
  • First Online:
Book cover Bio-Imaging and Visualization for Patient-Customized Simulations

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 13))

  • 811 Accesses

Abstract

Clinician-friendly methods for cardiac image segmentation in clinical practice remain a tough challenge. Despite increased image quality including medical imaging, image segmentation continues to represent a major bottleneck in practical applications due to noise and lack of contrast. Larger standard deviation in segmentation accuracy may be expected for automatic methods when the input dataset is varied; also at some instances the radiologists find them hard in case any correction is desired. In this context, this paper presents a semi-automatic algorithm that uses anisotropic diffusion for smoothing the image and enhancing the edges followed by a new graph cut method, AnnularCut, for 3D left ventricle segmentation from some pre-selected MR slices. The main contribution, in this work, is a new formulation for preventing the cellular automation method to leak into surrounding areas of similar intensity. Another contribution is the use of level sets for segmenting the slices automatically between the preselected slices segmented by the cellular automaton. Both qualitative and quantitative evaluation performed on York and MICCAI Grand Challenge workshop database of MR images reflect the potential of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abouzar E, Athanasios K, Amin K, Nassir N (2013) Segmentation by retrieval with guided random walks: application to left ventricle segmentation in MRI. Med Image Anal 17:236–253

    Article  Google Scholar 

  2. Adalsteinsson D, Sethian J (1995) A fast level set method for propagating interfaces. J Comput Phys 118:269–277

    Article  MATH  MathSciNet  Google Scholar 

  3. Andre A, Tsotsos J (2008) Efficient and generalizable statistical models of shape and appearance for analysis of CMRI. Med Image Anal 12:335–357

    Article  Google Scholar 

  4. Ayed I, Punithakumar K, Li S, Islam A (2009) Left ventricle segmentation via graph cut distribution. In: MICCAI Grand Challenge, Springer, pp 901–909

    Google Scholar 

  5. Ben Ayed I, Li S, Ross I (2009) Embedding overlap priors in variational left ventricle tracking. IEEE Trans Med Imaging 28:1902–1913

    Google Scholar 

  6. Boykov Y, Jolly MP (2001) Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. In: ICCV, vol 1, pp 105–112

    Google Scholar 

  7. Chan T, Vese L (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  MATH  Google Scholar 

  8. Dakua S (2011) Performance divergence with data discrepancy: a review. Artif Intell Rev 1:1–27

    Google Scholar 

  9. Domany E, Kinzel W (1984) Equivalence of cellular automata to ising models and directed percolation. Phys Rev Lett 53:311–314

    Article  MathSciNet  Google Scholar 

  10. Frangi A, Niessen W, Viergever M (2001) Three dimensional modeling for functional analysis of cardiac images: a review. IEEE Trans Med Imaging 20(1):2–25

    Article  Google Scholar 

  11. Gomes J, Faugeras O (2000) Reconciling distance functions and level sets. J Vis Commun Image Represent 11:209–223

    Article  Google Scholar 

  12. Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28(11):1–17

    Google Scholar 

  13. Hae-Yeoun L, Codella N, Cham M, Weinsaft J, Wang Y (2010) Automatic left ventricle segmentation using iterative thresholding and an active contour model with adaptation on short-axis cardiac MRI. TBME 57:905–913

    Google Scholar 

  14. Heimann T et al (2009) Comparison and evaluation of methods for LV segmentation from MR datasets. IEEE Trans Med Imaging 28:1251–1265

    Article  Google Scholar 

  15. Herman G, Odhner D (1991) Performance evaluation of an iterative image reconstruction algorithm for positron emission tomography. IEEE Trans Med Imaging 10(3):336–346

    Article  Google Scholar 

  16. Ilya P, Alan S, Hamid K (2000) Image segmentation and edge enhancement with stabilized inverse diffusion equations. IEEE Trans Image Process 9(2):256–266

    Article  MATH  Google Scholar 

  17. Jianbo S, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Google Scholar 

  18. Kass M, Witkin A, Terzopolous D (1988) Snakes: active contour models. Int J Comput Vision 4:321–331

    Article  Google Scholar 

  19. Krzysztof C, Jayaram U, Falcao A, Miranda P (2012) Fuzzy connectedness image segmentation in graph cut formulation: a linear-time algorithm and a comparative analysis. Math Imaging Vis 44:375–398

    Article  MATH  Google Scholar 

  20. Li C, Xu C, Gui C, Fox M (2005) Level set formulation without re-initialization: a new variational formulation. Proc IEEE CVPR 1:430–436

    Google Scholar 

  21. Lorenzo M, Sanchez G, Mohiaddin R, Rueckert D (2002) Atlas-based segmentation and tracking of 3D cardiac MR images using non-rigid registration. In: MICCAI 2002. LNCS, vol 2488. Springer, Heidelberg, pp 642–650

    Google Scholar 

  22. Lynch M, Ghita O, Whelan PF (2008) Segmentation of the left ventricle of the heart in 3-D\(+\)t MRI data using an optimized nonrigid temporal model. IEEE Trans Med Imaging 27:195–203

    Article  Google Scholar 

  23. Malladi R, Sethian J, Vemuri B (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17:158–175

    Article  Google Scholar 

  24. MICCAI (2009) Grand Challenge. www.smial.sri.utoronto.ca/LV_Challenge

  25. Michael L, Ovidiu G, Paul W (2008) Segmentation of the left ventricle of the heart in 3-D\(+\)t MRI data. IEEE Trans Med Imaging 27(2):195–203

    Google Scholar 

  26. Mortensen EN, Barrett WA (1998) Interactive segmentation with intelligent scissors. Graphical Models Image Process 60:349–384

    Article  MATH  Google Scholar 

  27. Nuzillard D, Lazar C (2007) Partitional clustering techniques for multi-spectral image segmentation. J Comput 2(10):1–8

    Google Scholar 

  28. Osher S, Sethian J (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulation. J Comput Phys 79:12–49

    Article  MATH  MathSciNet  Google Scholar 

  29. Paragios N (2003) A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Trans Med Imaging 22(6):773–776

    Article  Google Scholar 

  30. Pednekar K, Muthupillai R, Flamm S, Kakadiaris I (2006) Automated left ventricular segmentation in cardiac MRI. IEEE Trans Biomed Eng 53(7):1425–1428

    Article  Google Scholar 

  31. Pednekar A, Kurkure U, Muthupillai R, Flamm S, Kakadiaris I (2006) Automated LV segmentation in CMRI. TBME 53:1425–1428

    Google Scholar 

  32. Pluempitiwiriyawej C, Moura J, Wu Y, Ho C (2005) STACS: new active contour scheme for cardiac MR image segmentation. IEEE Trans Med Imaging 24(5):593–603

    Article  Google Scholar 

  33. Rezaee M, Zwet P, Lelieveldt B, Geest R, Reiber J (2000) A multiresolution image segmentation technique based on pyramidal segmentation and fuzzy Clustering. IEEE Trans Image Process 9(7):1238–1248

    Article  Google Scholar 

  34. Rother C, Kolmogorov V, Blake A (2004) Grabcut – interactive foreground extraction using iterated graph cuts. In: ACM SIGGRAPH, 2004

    Google Scholar 

  35. Song W, Jeffrey S (2003) Segmentation with ratio cut. IEEE Trans Pattern Anal Mach Intell 25(6):675–694

    Article  Google Scholar 

  36. Sum K, Paul C (2008) Vessel extraction under non-uniform illumination: a level set approach. IEEE Trans Biomed Eng 55(1):358–360

    Google Scholar 

  37. Surendra R (1995) Contour extraction from CMRI studies using snakes. IEEE Trans Med Imaging 14(2):328–338

    Article  Google Scholar 

  38. Tood M (1996) The expectation maximization algorithm. IEEE Signal Process Mag 13(6):47–60

    Article  Google Scholar 

  39. Vanzella W, Torre V (2006) A versatile segmentation procedure. IEEE Trans Syst Man Cybern Part C 36(2):366–378

    Article  Google Scholar 

  40. Vezhnevets V, Konouchine V (2005) Growcut – interactive multi-label n-d image segmentation by cellular automata. In: Proceedings of Graphicon 2005, pp 150–156

    Google Scholar 

  41. Warfield S, Dengler J, Zaers J, Guttmann C, Gil W, Ettinger J, Hiller J, Kikinis R (1995) Automatic identification of grey matter structures from MRI to improve the segmentation of white matter lesions. J Imag Guided Surg 1:326–338

    Article  Google Scholar 

  42. Yun Z, Papademetris X, Sinusas A, Duncan J (2010) Segmentation of the left ventricle from cardiac MR images using a subject-specific dynamical model. IEEE Trans Med Imaging 29:669–687

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Dakua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dakua, S.P., Abi Nahed, J., Al-Ansari, A. (2014). A Graph Based Methodology for Volumetric Left Ventricle Segmentation. In: Tavares, J., Luo, X., Li, S. (eds) Bio-Imaging and Visualization for Patient-Customized Simulations. Lecture Notes in Computational Vision and Biomechanics, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-03590-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03590-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03589-5

  • Online ISBN: 978-3-319-03590-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics