Advertisement

A Novel Colon Wall Flattening Model for Computed Tomographic Colonography: Method and Validation

  • Huafeng Wang
  • Lihong Li
  • Hao Han
  • Yunhong Wang
  • Weifeng Lv
  • Xianfeng Gu
  • Zhengrong Liang
Conference paper
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 13)

Abstract

Computed tomographic colonography (CTC) has been developed for diagnosis of colon cancer. Flattening the three-dimensional (3D) colon wall into two-dimensional (2D) image is believed to be much effective for providing supplementary information to the endoscopic views and further facilitating colon registration, taniae coli (TC) detection, and haustral folds segmentation. Though the previously-used conformal mapping-based flattening methods can preserve the angle, it has limitations in providing accurate information of the 3D inner colon wall due to the lack of undulating topography. In this paper, we present a novel colon wall flattening method based on a 2.5D approach. Coupling with the conformal flattening model, the new approach builds an elevation distance map to depict the neighborhood characteristics of the inner colon wall. We validated the new method via two CTC applications: TC detection and haustral fold segmentation. Experimental results demonstrated the effectiveness of our model for CTC studies.

Keywords

Conformal mapping 2.5D representation Colon wall Medical imaging Computed tomographic colonography 

Notes

Acknowledgments

This work was partially supported by the NIH/NCI under Grant #CA143111, #CA082402, and the PSC-CUNY award #65230-00 43.

References

  1. 1.
    American Cancer Society (2012) Cancer facts & figures 2012. American Cancer Sciety, AtlantaGoogle Scholar
  2. 2.
    Eddy D (1990) Screening for colorectal cancer. Ann Intern Med 113:373–384CrossRefGoogle Scholar
  3. 3.
    Lamy J, Summers R (2007) Teniae coli detection from colon surface: extraction of anatomical markers for virtual colonos-copy. In: LNCS, vol 4841, pp 199–207Google Scholar
  4. 4.
    Wei Z, Yao J, Wang S, Summers R (2010) Teniae coli extraction in human colon for computed tomographic colonography images. In: Proceedings of the MICCAI 2010 workshop: virtual colonoscopy & abdominal imaging, pp 135–140. Beijing, ChinaGoogle Scholar
  5. 5.
    Hong W, Gu X, Qiu F, Jin M, Kaufman A (2006) Conformal virtual colon flattening In: Proceedings of the 2006 ACM symposium on solid and physical modeling, pp 85–93Google Scholar
  6. 6.
    Wan M, Liang Z, Ke Q, Hong L, Bitter I, Kaufman A (2002) Automatic centerline extraction for virtual colonoscopy. IEEE Trans Med Imaging 21:1450–1460CrossRefGoogle Scholar
  7. 7.
    Zeng W, Marino J, Gu X, Kaufman A (2010) Conformal geometry based supine and prone colon registration. In: Medical image computing and computer-assisted intervention (MICCAI) virtual colonoscopy, workshop, pp 149–154Google Scholar
  8. 8.
    Zhu H, Barish M, Pickhardt P, Liang Z (2013) Haustral fold segmentation with curvature-guided level set evolution. IEEE Trans Biomed Eng 60(2):321–331CrossRefGoogle Scholar
  9. 9.
    Paik DS, Beaulieu CF, Jeffrey RB Jr, Karadi CA, Napel S (2000) Visualization modes for CT colonography using cylindrical and planar map projections. J Comput Assist Tomogr 24(2):179–188Google Scholar
  10. 10.
    Haker S, Angenent S, Kikinis R (2000) Nondistorting flattening maps and the 3D visualization of colon CT images. IEEE Trans Med Imaging 19:665–670Google Scholar
  11. 11.
    Bartrolf A, Wegenkittl R, Konig A, Groller E (2001) Nonlinear virtual colon unfolding. In: Proceedings of IEEE visualization, pp 411–418Google Scholar
  12. 12.
    Bartroli AV, Wegenkittl R, Koumlnig A, Groumlller E (2001) Nonlinear virtual colon unfolding. In: Proceedings of IEEE Visualization, pp 411–418Google Scholar
  13. 13.
    Wang Z, Li B, Liang Z (2005) Feature-based texture display for detection of polyps on flattened colon volume. In: Proceedings of the 2005 IEEE engineering in medicine and biology 27th annual conference Shanghai, China, 1–4 Sept 2005Google Scholar
  14. 14.
    Jin M, Kim J, Luo F, Gu XD (2008) Discrete surface ricci flow. IEEE Trans Visual Comput Graphics 14(5):1030–1043Google Scholar
  15. 15.
    Zeng W, Marino J, Chaitanya GK, Gu X, Kaufman A (2010) Supine and prone colon registration using quasi-conformal mapping. IEEE Trans Vis Comput Graphics 16:1348–1357CrossRefGoogle Scholar
  16. 16.
    Yao J, Chowdhury AS, Aman J, Summers RM (2010) Reversible projection technique for colon unfolding. IEEE Trans Biomed Eng 57(12):2861–2869CrossRefGoogle Scholar
  17. 17.
    Liang Z, Yang F, Wax M, Li J, You J, Kaufman A, Hong L, Li H, Viswambharan A (1997) Inclusion of a priori information in segmentation of colon lumen for 3D virtual colonoscopy. In: Conference record of IEEE nuclear science symposium-medical imaging conference, Albuquerque, NMGoogle Scholar
  18. 18.
    Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  19. 19.
    Sethian JA (1996) A fast marching level set method for monotonically advancing fronts. Proc Nat Acad Sci 93:1591–1595Google Scholar
  20. 20.
    Deschamps T, Cohen LD (2001) Fast extraction of minimal paths in 3D images and appli-cation to virtual endoscopy. Med Image Anal 4:281–299CrossRefGoogle Scholar
  21. 21.
    Antiga L (2003) Patient-specific modeling of geometry and blood flow in large arteries. PhD thesis, Politecnico di MilanoGoogle Scholar
  22. 22.
    Huang A, Roy DA, Summers RM, Franaszek M, Petrick N, Choi JR, Pickhardt PJ (2007) Teniae coli-based circumfe-rential localization system for CT colonography: feasability study. Radiology 243(2):551–560Google Scholar
  23. 23.
    Williams D, Grimm S, Coto E, Roudsari A, Hatzakis H (2008) Olumetric curved planar reformation for virtual endoscopy. IEEE Trans Visual Comput Graphics 14(1):109–119Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Huafeng Wang
    • 1
    • 2
  • Lihong Li
    • 3
  • Hao Han
    • 1
  • Yunhong Wang
    • 4
  • Weifeng Lv
    • 4
  • Xianfeng Gu
    • 5
  • Zhengrong Liang
    • 1
  1. 1.Department of RadiologyStony Brook University Stony BrookUSA
  2. 2.School of SoftwareBeihang University of BeijingBeijingChina
  3. 3.College of Staten IslandVictory BlvdUSA
  4. 4.School of Computer ScienceBeihang University Of BeijingBeijingChina
  5. 5.Dept. of Computer ScienceStony Brook UniversityStony BrookUSA

Personalised recommendations