Airflow and Particle Deposition in a Dry Powder Inhaler: An Integrated CFD Approach

  • Jovana Milenkovic
  • Alexandros H. Alexopoulos
  • Costas Kiparissides
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 256)


An integrated computational model of a commercial Dry Powder Inhaler, DPI, device (i.e., Turbuhaler) is developed. The steady-state flow in a DPI is determined by solving the Navier-Stokes equations using FLUENT (v6.3) considering different flow models, e.g., laminar, k-ε, k-ω SST. Particle motion and deposition are described using an Eulerian-fluid/Lagrangian-particle approach. Particle/wall collisions are taken to result in deposition when the normal collision velocity is less than a size-dependent critical value. The flow rate and particle deposition are determined for a range of pressure drops (i.e., 800-8800Pa), as well as particle sizes corresponding to single particles and aggregates (i.e., 0.5-20μm). Overall, the simulation results are found to agree well with available experimental data for the volumetric outflow rate as well as the local and total particle deposition.


Dry Powder Inhaler Turbuhaler CFD Particle Deposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdelrahim, M.E.: Emitted dose and lung deposition of inhaled terbutaline from Turbuhaler at different conditions. Respiratory Medicine 104, 682–689 (2010)CrossRefGoogle Scholar
  2. 2.
    Adi, S., Adi, H., Chan, H.-K., Finlay, W.H., Tong, Z., Yang, R., Yu, A.: Agglomerate strength and dispersion of pharmaceutical powders. J. Aerosol Science. 42, 285–294 (2011)CrossRefGoogle Scholar
  3. 3.
    Alagusundaram, M., Deepthi, N., Ramkanth, S., Angalaparameswari, S., Saleem, T.S.M., Gnanaprakash, K., Thiruvengadarajan, V.S., Madhusudhana, C., Alagusundaram, C.M., et al.: Dry Powder Inhalers - An Overview. Int. J. Res. Pharm. Sci. 1(1), 34–42 (2010)Google Scholar
  4. 4.
    Ashurst, I., Malton, A., Prime, D., Sumby, B.: Latest advances in the development of dry powder inhalers. PSTT 3(7), 246–256 (2000)Google Scholar
  5. 5.
    Brach, R.M., Dunn, P.F.: A Mathematical Model of Impact and Adhesion of Microspheres. Aerosol Sci. Technol. 23, 51–71 (1992)CrossRefGoogle Scholar
  6. 6.
    Calvert, G., Hassanpour, A., Ghadiri, M.: Mechanistic analysis and computer simulation of the aerodynamic dispersion of loose aggregates. Chemical Engineering Research and Design 89, 519–525 (2011)CrossRefGoogle Scholar
  7. 7.
    Chan, H.-K.: Dry powder aerosol drug delivery – Opportunities for colloid and surface scientists, Colloids and Surfaces A: Physicochem. Eng. Aspects 284-285, 50–55 (2006)CrossRefGoogle Scholar
  8. 8.
    Coates, M.S., Fletcher, D.F., Chan, H.-K., Raper, J.A.: Effect of Design on the Performance of a Dry Powder Inhaler Using Computational Fluid Dynamics. Part 1: Grid Structure and Mouthpiece Length. J. of Pharmaceutical Sciences 93, 2863–2876 (2004)Google Scholar
  9. 9.
    Coates, M.S., Chan, H.-K., Fletcher, D.F., Raper, J.A.: Influence of Air Flow on the Performance of a Dry Powder Inhaler Using Computational and Experimental Analyses. Pharmaceutical Research 22(9), 923–932 (2005)CrossRefGoogle Scholar
  10. 10.
    Coates, M.S., Chan, H.-K., Fletcher, D.F., Raper, J.A.: Effect of Design on the Performance of a Dry Powder Inhaler Using Computational Fluid Dynamics. Part 2: Air Inlet Size. J. of Pharmaceutical Sciences 95(6), 1382–1392 (2006)Google Scholar
  11. 11.
    de Koning, J.P., Visser, M.R., Oelen, G.A., de Boer, A.H., van der Mark, T.W., Coenegracht, P.M.J., Tromp, T.F.J., Frijlink, H.W.: Effect of Peak Inspiratory Flow and Flow Increase Rate on In Vitro Drug Deposition from Four Dry Powder Inhaler Devices. In: Dry Powder Inhalation: Technical and Physiological Aspects, Prescribing and Use, Thesis, Rijksuniversiteit Groningen, ch. 6, pp. 83–94 (2001)Google Scholar
  12. 12.
    Finlay, W.: The Mechanics of Inhaled Pharmaceutical Aerosols. An Introduction. Academic Press, London (2001)Google Scholar
  13. 13.
    French, D.L., Edwards, D.A., Niven, R.W.: The Influence of Formulation on Emission Deaggregation and Deposition of Dry Powders for Inhalation. J. Aerosol Sci. 27(5), 769–783 (1996)CrossRefGoogle Scholar
  14. 14.
    Hoe, S., Traini, D., Chan, H.-K., Young, P.M.: Measuring charge and mass distribu-tions in dry powder inhalers using the electrical Next Generation Impactor (eNGI). European J. of Pharmaceutical Science 38, 88–94 (2009)CrossRefGoogle Scholar
  15. 15.
    Islam, N., Gladki, E.: Dry powder inhalers (DPIs) - A review of device reliability and innovation. Int. J. of Pharmaceutics 360, 1–11 (2008)CrossRefGoogle Scholar
  16. 16.
    Islam, N., Clearly, M.J.: Developing an efficient and reliable dry powder inhaler for pulmonary drug delivery – A review for multidisciplinary researchers. Medical Engineering & Physics 34, 409–427 (2012)CrossRefGoogle Scholar
  17. 17.
    Ligotke, M.W.: Development and characterization of a dry powder inhaler. In: Dalby, R.N., Byron, P.R., Peart, J., Farr, S.J. (eds.) Respiratory Drug Delivery VIII, vol. I, pp. 419–422. Serentec Press Inc., Tucson (2002)Google Scholar
  18. 18.
    Newman, S.P., Busse, W.W.: Evolution of dry powder inhaler design, formulation, and performance. Respir. Med. 96(5), 293–304 (2002)CrossRefGoogle Scholar
  19. 19.
    Schuler, C., Bakshi, A., Tuttle, D., Smith, A., Paboojian, S., Snyder, H., Rasmussen, D., Clark, A.: Inhale’s dry-powder pulmonary drug delivery system: Challenges to current modeling of gas-solid flows. In: Proceedings of FEDSM 1999: 3rd ASME/JSME Joint Fluids Engineering Conference and 1999 ASME Fluids Engineering Summer Meeting, FEDSM 1999-7895 (1999)Google Scholar
  20. 20.
    Tobyn, M., Staniforth, J.N., Morton, D., Harmer, Q., Newton, M.E.: Active and intelligent inhaler device development. Int. J. of Pharmaceutics 277, 31–37 (2004)CrossRefGoogle Scholar
  21. 21.
    Tong, Z.B., Yang, R.Y., Chu, K.W., Yu, A.B., Adi, S., Chan, H.-K.: Numerical study of the effects of particle size and polydispersity on the agglomerate dispersion in a cyclonic flow. Chemical Engineering Journal 164, 432–441 (2010)CrossRefGoogle Scholar
  22. 22.
    Tsima, M.P., Martin, G.P., Marriott, C., Gardenton, D., Yianneskis, M.: Drug delivery to the respiratory tract using dry powder inhaler. Int. J. of Pharmaceutics 101, 1–13 (1994)CrossRefGoogle Scholar
  23. 23.
    Wetterlin, K.: Turbuhaler: A New Powder Inhaler for Administration of Drugs to the Airways. Pharmaceutical Research 5(8), 506–508 (1988)CrossRefGoogle Scholar
  24. 24.
    Zeng, X.-M., Martin, G.P., Marriott, C., Pritchard, J.: The influence of carrier morphology on drug delivery by dry powder inhalers. Int. J. of Pharmaceutics 200, 93–106 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jovana Milenkovic
    • 1
    • 2
  • Alexandros H. Alexopoulos
    • 2
  • Costas Kiparissides
    • 1
    • 2
    • 3
  1. 1.Department of Chemical EngineeringAristotle University of ThessalonikiThessalonikiGreece
  2. 2.CPERI/CERTHThessalonikiGreece
  3. 3.Department of Chemical EngineeringThe Petroleum InstituteAbu DhabiU.A.E.

Personalised recommendations