Numerical Study of Turbulent Boundary-Layer Flow Induced by a Sphere Above a Flat Plate

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 256)

Abstract

The flow past a three-dimensional obstacle on a flat plate is one of the key problems in the boundary-layer flows, which shows a significant value in industry applications. A direct numerical study of flow past a sphere above a flat plate is investigated. The immersed boundary (IB) method with multiple-direct forcing scheme is used to couple the solid sphere with fluid. The detail information of flow field and vortex structure is obtained. The velocity and pressure distributions are illuminated, and the recirculation region with the length of which is twice as much as the sphere diameter is observed in the downstream of the sphere. The effects of the sphere on the boundary layer are also explored, including the velocity defect, the turbulence intensity and the Reynolds stresses.

Keywords

Direct Numerical Simulation Immersed Boundary Method Boundary-layer Flow Sphere Flat Plate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schlichting, H.: Experimentelle Untersuchungen Zum Ranhigkeitsproblem. Ing. Arch. 7, 1–34 (1936)CrossRefGoogle Scholar
  2. 2.
    Klemin, A., Schaefer, E.B., Beerer, J.G.: Aerodynamics of the Perisphere and Trylon at World’s Fair. Trans. Am. Soc. Civ. Eng. 2042, 1449–1472 (1939)Google Scholar
  3. 3.
    Okamoto, S.: Turbulent Shear Flow Behind a Sphere Placed On a Plane Boundary. Turbulent Shear Flows 2, 246–256 (1980)Google Scholar
  4. 4.
    Takayuki, T.: Flow Around a Sphere in a Plane Turbulent Boundary Layer. Journal of Wind Engineering and Industrial Aerodynamics 96, 779–792 (2008)CrossRefGoogle Scholar
  5. 5.
    Zeng, L., Balachandar, S., Fischer, P.: Interactions of a Stationary Finite-Sized Particle with Wall Turbulence. Journal of Fluid Mechanics 594, 271–305 (2008)CrossRefMATHGoogle Scholar
  6. 6.
    Charles, S.: Peskin: Flow Patterns Around Heart Valves: A Numerical Method. Journal of Computational Physics 10, 252–271 (1972)CrossRefMATHGoogle Scholar
  7. 7.
    Goldstein, D., Handler, R., Sirovich, L.: Modeling a No-Slip Flow Boundary with an External Force Field. Journal of Computational Physics 105, 354–366 (1993)CrossRefMATHGoogle Scholar
  8. 8.
    Le, D.V., Khoo, B.C., Lim, K.M.: An Implicit-Forcing Immersed Boundary Method for Simulating Viscous Flows in Irregular Domains. Computer Methods in Applied Mechanics and Engineering 197, 2119–2130 (2008)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Mittal, R., Iaccarino, G.: Immersed Boundary Methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mohd-Yusof, J.: Combined Immersed Boundaries/B-Splines Methods for Simulations of Flows in Complex Geometries. CTR Annual Research Briefs, 317–327 (1997)Google Scholar
  11. 11.
    Xu, S., Wang, Z.J.: A 3D Immersed Interface Method for Fluid–Solid Interaction. Computer Methods in Applied Mechanics and Engineering 197, 2068–2086 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Le, D.V., Khoo, B.C., Peraire, J.: An Immersed Interface Method for Viscous Incompressible Flows Involving Rigid and Flexible Boundaries. Journal of Computational Physics 220, 109–138 (2006)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Wang, Z., Fan, J., Luo, K.: Combined Multi-Direct Forcing and Immersed Boundary Method for Simulating Flows with Moving Particles. International Journal of Multiphase Flow 34, 283–302 (2008)CrossRefGoogle Scholar
  14. 14.
    Luo, K., Jin, J., Zheng, Y.: Direct Numerical Simulation of Particle Dispersion in Gas-Solid Compressible Turbulent Jets. Chinese Journal of Chemical Engineering 13, 161–166 (2005)Google Scholar
  15. 15.
    Zhou, Z., Wang, Z.L., Fan, J.R.: Direct Numerical Simulation of the Transitional Bounda-ry-Layer Flow Induced by an Isolated Hemispherical Roughness Element. Comput. Methods Appl. Mech. Engrg. 199, 1573–1582 (2010)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Luo, K., Wang, Z., Fan, J.: Full-Scale Solutions to Particle-Laden Flows: Multidirect Forcing and Immersed Boundary Method. Physical Review E 76, 066709 (2007)Google Scholar
  17. 17.
    Wang, Z., Fan, J., Cen, K.: Immersed Boundary Method for the Simulation of 2D Viscous Flow Based On Vorticity–Velocity Formulations. Journal of Computational Physics 228, 1504–1520 (2009)CrossRefMATHGoogle Scholar
  18. 18.
    Wang, Z.L., Fan, J.R., Luo, K.: Immersed Boundary Method for the Simulation of Flows with Heat Transfer. International Journal of Heat and Mass Transfer 52, 4510–4518 (2009)CrossRefMATHGoogle Scholar
  19. 19.
    Luo, K., Zheng, Y.Q., Fan, J.R.: Interaction Between Large-Scale Vortex Structure and Dispersed Particles in a Three Dimensional Mixing Layer. Chinese Journal of Chemical Engineering 11, 377–382 (2003)Google Scholar
  20. 20.
    Wang, Z., Fan, J., Luo, K.: Numerical Study of Solid Particle Erosion On the Tubes Near the Side Walls in a Duct with Flow Past an Aligned Tube Bank. AIChE J. 56, 66–78 (2010)CrossRefGoogle Scholar
  21. 21.
    Wang, Z.L., Fan, J.R., Luo, K.: Parallel Computing Strategy for the Simulation of Particulate Flows with Immersed Boundary Method. Science in China Series E: Technological Sciences 51, 1169–1176 (2008)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Peskin, C.S.: The Immersed Boundary Method. Acta Numerica 11, 479–517 (2002)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Griffith, B.E., Peskin, C.S.: On the Order of Accuracy of the Immersed Boundary Method: Higher Order Convergence Rates for Sufficiently Smooth Problems. Journal of Computational Physics 208, 75–105 (2005)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Uhlmann: An Immersed Boundary Method with Direct Forcing for the Simulation of Particulate Flows. Journal of Computational Physics 209, 448–476 (2005)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Musker, A.J.: Explicit Expression for the Smooth Wall Velocity Distribution in a Turbulent Boundary Layer. AIAA Journal 17, 655–657 (1979)CrossRefMATHGoogle Scholar
  26. 26.
    Orlanski, A.: Simple Boundary Condition for Unbounded Hyperbolic Flows. Journal of Computational Physics 21, 251–269 (1976)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhouPR China

Personalised recommendations