Kinetic Analysis of the Coke Calcination Processes in Rotary Kilns

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 256)

Abstract

Kinetic analysis of the green petroleum coke calcining processes using the simulation program HYSYS and actual industrial data is presented. The rates of physical and chemical phenomena of interest, such as the rate of moisture removal, rates of volatile matter release and combustion, rates of coke dust and sulphur combustion were all represented by their kinetic models. This paper gives a detailed description of the simulation of these processes using HYSYS "kinetic reactor" module. The results were compared with actual industrial rotary kiln data in order to validate the simulation and there was a reasonable agreement for the two different GPCs considered. The methodology of kinetics-based simulation described in this study may be used to predict coke calcining kilns performance regardless of the green coke composition.

Keywords

Rotary Kiln Calcining Processes Kinetics Simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ALBA, Private communicationGoogle Scholar
  2. 2.
    Bui, R.T., Perron, J., Read, M.: Model-based optimization of the operation of the coke calcining kiln. Carbon 31(7), 1139–1147 (1993)CrossRefGoogle Scholar
  3. 3.
    Dernedde, E., Charette, A., Bourgeois, T., Castonguay, L.: Kinetic Phenomena of the Volatiles in Ring Furnaces. In: Light Met. Pcoc. Tech, Sess. AIME 105th Annual Meeting, p. 589 (1986)Google Scholar
  4. 4.
    Elkanzi, E.M.: Simulation of the Coke Calcining Processes in Rotary Kilns. Chemical Product and Process Modeling 2(3), Article 20 (2007)Google Scholar
  5. 5.
    Howard, J.B., Williams, G.C., Fine, D.H.: Kinetics of Carbon Monoxide Oxidation in Post flame Gases. In: 14th International Symposium on Combustion, pp. 975–985 (1973)Google Scholar
  6. 6.
    Ibrahim, H.A., Ali, M.M.: Effect of the removal of sulphur and volatile matter on the true density of petroleum coke. Periodica Polytechnica Ser. Chem. 49(1), 19–24 (2005)Google Scholar
  7. 7.
    Li, K.W., Friday, J.R.: Simulation of Coke Calciners. Carbon 12, 225–231 (1974)CrossRefGoogle Scholar
  8. 8.
    Lu, C.-W., Wu, Y.-J.: Experimental and theoretical investigations of rate coefficients of the reaction S(3P)+O2 in the temperature range 298-878 K). Journal of Chemical Physics 121(17), 8271–8278 (2004)CrossRefGoogle Scholar
  9. 9.
    Lyons, J.W., Min, H.S., Parisot, P.F., Paul, J.F.: Experimentation with a Wet-Process Rotary Cement Kiln via the Analog Computer. Ind. Eng. Chem. Process. Des. Dev. 1(1), 29–33 (1962)CrossRefGoogle Scholar
  10. 10.
    Martins, A., Marcio, O., Leandro, S., Franca, A.S.: Modeling and Simula-tion of Petroleum Coke Calcination in Rotary Kilns. Fuel 80, 1611–1622 (2001)CrossRefGoogle Scholar
  11. 11.
    Perron, J., Bui, R.T., Nguyen, T.H.: Modelisation du four de calcination du coke de petrole: 2- simulation du procede. Can. J. Chem. Eng. 70, 1120–1131 (1992)CrossRefGoogle Scholar
  12. 12.
    Menendez, J.A., Pis, J.J., Alvarez, R., Barriocanal, E., Fuente, E., Diez, M.A.: Characterization of Petroleum Coke as an Additive in Metallurgical Coke making Modification of Thermoplastic Properties of Coal. Energy & Fuels 10, 1262–1268 (1996)CrossRefGoogle Scholar
  13. 13.
    Perron, J., Bui, R.T.: Rotary Cylinders: Solid transport Prediction by Dimensional Rheological Analysis. Can. J. Chem. Eng. 68, 61–68 (1990)CrossRefGoogle Scholar
  14. 14.
    Srinivasan, R.J., Srirmulu, S., Kulasekaran, S.: Mathematical modeling of fluidized bed combustion- 2: combustion of gases. Fuel 77(9/10), 1033–1043 (1988)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.University of BahrainIsa TownKingdom of Bahrain

Personalised recommendations