Advertisement

Efficient Design Optimization of Microwave Structures Using Adjoint Sensitivity

  • Slawomir Koziel
  • Leifur Leifsson
  • Stanislav Ogurtsov
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 256)

Abstract

An important step of the microwave design process is the adjustment of geometry and material parameters of the structure under consideration to make it meet given performance requirements. Nowadays, it is typically conducted using full-wave electromagnetic (EM) simulations. Because accurate high-fidelity simulations are computationally expensive, automation of this process is quite challenging. In particular, the use of conventional numerical optimization algorithms may be prohibitive as these methods normally require a large number of objective function evaluations (and, consequently, EM simulations) to converge. The adjoint sensitivity technique that recently become available in commercial EM simulation software packages can be utilized to speed up the EM-driven design optimization process either by utilizing the sensitivity information in conventional gradient-based algorithms or by combining it with surrogate-based approaches. Here, several recent methods and algorithms for microwave design optimization using adjoint sensitivity are reviewed. We discuss advantages and disadvantages of these techniques and illustrate them through numerical examples.

Keywords

Computer-Aided Design (CAD) Simulation-driven Design Microwave Design Optimization Electromagnetic Simulation Adjoint Sensitivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Søndergaard, J.: Space mapping: the state of the art. IEEE Trans. Microwave Theory Tech. 52(1), 337 (2004)CrossRefGoogle Scholar
  2. 2.
    Koziel, S., Cheng, Q.S., Bandler, J.W.: Space mapping. IEEE Microwave Magazine 9(6), 105–122 (2008)CrossRefGoogle Scholar
  3. 3.
    Amari, S., LeDrew, C., Menzel, W.: Space-mapping optimization of planar coupled-resonator microwave filters. IEEE Trans. Microwave Theory Tech. 54(5), 2153–2159 (2006)CrossRefGoogle Scholar
  4. 4.
    Swanson, D., Macchiarella, G.: Microwave filter design by synthesis and optimization. IEEE Microwave Magazine 8(2), 55–69 (2007)CrossRefGoogle Scholar
  5. 5.
    Rautio, J.C.: Perfectly calibrated internal ports in EM analysis of planar circuits. In: IEEE MTT-S Int. Microwave Symp. Dig., Atlanta, GA, pp. 1373–1376 (2008)Google Scholar
  6. 6.
    Echeverria, D., Hemker, P.W.: Space mapping and defect correction. CMAM The International Mathematical Journal Computational Methods in Applied Mathematics 5(2), 107–136 (2005)MathSciNetMATHGoogle Scholar
  7. 7.
    Koziel, S.: Shape-preserving response prediction for microwave design optimization. IEEE Trans. Microwave Theory and Tech. 58(11), 2829–2837 (2010)CrossRefGoogle Scholar
  8. 8.
    Nair, D., Webb, J.P.: Optimization of microwave devices using 3-D finite elements and the design sensitivity of the frequency response. IEEE Trans. Magn. 39(3), 1325–1328 (2003)CrossRefGoogle Scholar
  9. 9.
    El Sabbagh, M.A., Bakr, M.H., Nikolova, N.K.: Sensitivity analysis of the scattering pa-rameters of microwave filters using the adjoint network method. Int. J. RF and Microwave Computer-Aided Eng. 16(6), 596–606 (2006)CrossRefGoogle Scholar
  10. 10.
    Kiziltas, G., Psychoudakis, D., Volakis, J.L., Kikuchi, N.: Topology design optimization of dielectric substrates for bandwidth improvement of a patch antenna. IEEE Trans. Antennas Prop. 51(10), 2732–2743 (2003)CrossRefGoogle Scholar
  11. 11.
    Uchida, N., Nishiwaki, S., Izui, K., Yoshimura, M., Nomura, T., Sato, K.: Simultaneous shape and topology optimization for the design of patch antennas. In: European Conf. Antennas Prop., pp. 103–107 (2009)Google Scholar
  12. 12.
    Bakr, M.H., Ghassemi, M., Sangary, N.: Bandwidth enhancement of narrow band antennas exploiting adjoint-based geometry evolution. In: IEEE Int. Symp. Antennas Prop., pp. 2909–2911 (2011)Google Scholar
  13. 13.
    CST Microwave Studio, 2012. CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany (2012)Google Scholar
  14. 14.
    MatlabTM, Version 7.6, The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 (2008)Google Scholar
  15. 15.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research. Springer (2000)Google Scholar
  16. 16.
    Koziel, S., Mosler, F., Reitzinger, S., Thoma, P.: Robust microwave design optimization using adjoint sensitivity and trust regions. Int. J. RF and Microwave CAE 22(1), 10–19 (2012)CrossRefGoogle Scholar
  17. 17.
    Alexandrov, N.M., Dennis, J.E., Lewis, R.M., Torczon, V.: A trust region framework for managing use of approximation models in optimization. Struct. Multidisciplinary Optim. 15(1), 16–23 (1998)CrossRefGoogle Scholar
  18. 18.
    Koziel, S., Yang, X.-S. (eds.): Computational Optimization, Methods and Algorithms. SCI, vol. 356. Springer, Heidelberg (2011)MATHGoogle Scholar
  19. 19.
    Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization, Prog. Aerospace Sciences 45(1-3), 50–79 (2009)CrossRefGoogle Scholar
  20. 20.
    Alexandrov, N.M., Lewis, R.M.: An overview of first-order model management for engi-neering optimization. Optimization Eng. 2(4), 413–430 (2001)CrossRefMATHGoogle Scholar
  21. 21.
    Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods. MPS-SIAM Series on Optimization (2000)Google Scholar
  22. 22.
    Koziel, S., Bandler, J.W., Madsen, K.: Quality assessment of coarse models and surrogates for space mapping optimization. Optimization and Engineering 9(4), 375–391 (2008)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Petosa, A.: Dielectric Resonator Antenna Handbook. Artech House (2007)Google Scholar
  24. 24.
    Koziel, S., Ogurtsov, S., Bandler, J.W., Cheng, Q.S.: Robust space mapping optimization exploiting EM-based models with adjoint sensitivity. In: IEEE MTT-S Int. Microwave Symp. Dig (2012)Google Scholar
  25. 25.
    Kuo, J.T., Chen, S.P., Jiang, M.: Parallel-coupled microstrip filters with over-coupled end stages for suppression of spurious responses. IEEE Microwave and Wireless Comp. Lett. 13(10), 440–442 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Slawomir Koziel
    • 1
  • Leifur Leifsson
    • 1
  • Stanislav Ogurtsov
    • 1
  1. 1.Engineering Optimization & Modeling Center, School of Science and EngineeringReykjavik UniversityReykjavikIceland

Personalised recommendations