An X-FEM Based Approach for Topology Optimization of Continuum Structures

  • Meisam AbdiEmail author
  • Ian Ashcroft
  • Ricky Wildman
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 256)


In this study, extended finite element (X-FEM) is implemented to represent topology optimization of continuum structures in a fixed grid design domain. An evolutionary optimization algorithm is used to gradually remove inefficient material from the design space during the optimization process. In the case of 2D problems, evolution of the design boundary which is supper-imposed on the fixed grid finite element framework is captured using isolines of structural performance. The proposed method does not need any remeshing approach as the X-FEM scheme can approximate the contribution of boundary elements in the finite element frame work of the problem. Therefore the converged solutions come up with clear and smooth boundaries which need no further interpretation. This approach is then extended to 3D by using a 3D X-FEM scheme implemented on isosurface topology design.


Topology Optimization X-FEM Isoline Isosurface Evolutionary 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdi, M., Wildman, R., Ashcroft, I.: Evolutionary topology optimization using X-FEM and isolines. Engineering Optimization (in press, 2013)Google Scholar
  2. 2.
    Allaire, G., Jouve, F., Toader, A.M.: Structural optimisation using sensitivity analysis and a level set method. J. Comp. Phys. 194, 363–393 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aremu, A., Ashcroft, I., Wildman, R., Hague, R., Tuck, C., Brackett, D.: The effects of BESO parameters on an industrial designed component for additive manufacture. Proc. IMechE Part B: J. Engineering Manufacture (2012) (in press)Google Scholar
  4. 4.
    Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5), 601–620 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202 (1989)CrossRefGoogle Scholar
  6. 6.
    Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering 71, 197–224 (1988)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dunning, P., Kim, H.A., Mullineux, G.: Error analysis of fixed grid formulation for boundary based structural optimisation. In: 7th ASMO UK / ISSMO Conference on Engineering Design Optimisation, Bath, UK, July 7-8 (2008)Google Scholar
  8. 8.
    Lee, D., Park, S., Shin, S.: Node-wise topological shape optimum design for structural reinforced modeling of Michell-type concrete deep beams. J. Solid Mech. Mater. Eng. 1(9), 1085–1096 (2007)Google Scholar
  9. 9.
    Li, L., Wang, M.Y., Wei, P.: XFEM schemes for level set based structural optimization. Frontiers of Mechanical Engineering 7(4), 335–356 (2012)CrossRefGoogle Scholar
  10. 10.
    Maute, K., Ramm, E.: Adaptive topology optimisation. Struct. Optim. 10, 100–112 (1995)CrossRefGoogle Scholar
  11. 11.
    Miegroet, L.V., Duysinx, P.: Stress concentration minimization of 2D Filets using X-FEM and level set description. Structural and Multidisciplinary Optimisation 33, 425–438 (2007)CrossRefGoogle Scholar
  12. 12.
    Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46, 131–150 (1999)CrossRefzbMATHGoogle Scholar
  13. 13.
    Querin, O.M., Steven, G.P., Xie, Y.M.: Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Engineering Computations 15(8), 1031–1048 (1988)CrossRefGoogle Scholar
  14. 14.
    Sigmund, O.: A 99 line topology optimisation code written in Matlab. Struct. Multidiscipl. Optim. 21, 120–127 (2001)Google Scholar
  15. 15.
    Sukumar, N., Chopp, D.L., Moës, N., Belytschko, T.: Modeling Holes and Inclusions by Level Sets in the Extended Finite Element Method. Computer Methods in Applied Mechanics and Engineering 190, 6183–6200 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Victoria, M., Martí, P., Querin, O.M.: Topology design of two-dimensional continuum structures using isolines. Computer and Structures 87, 101–109 (2009)CrossRefGoogle Scholar
  17. 17.
    Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimisation. Comput. Meth. Appl. Eng. 192, 227–246 (2003)CrossRefzbMATHGoogle Scholar
  18. 18.
    Wei, P., Wang, M.Y., Xing, X.: A study on X-FEM in continuum structural optimization using level set method. Computer-Aided Design 42, 708–719 (2010)CrossRefGoogle Scholar
  19. 19.
    Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Computers & Structures 49, 885–896 (1993)CrossRefGoogle Scholar
  20. 20.
    Yang, X.Y., Xie, Y.M., Steven, G.P., Querin, O.M.: Bidirectional evolutionary method for stiffness optimisation. AIAA J. 37(11), 1483–1488 (1999)CrossRefGoogle Scholar
  21. 21.
    Zhou, M., Rozvany, G.I.N.: The COG algorithm, Part II: Topological, geometrical and general shape optimisation. Comp. Meth. Appl. Mech. Eng. 89, 309–336 (1991)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty of EngineeringUniversity of NottinghamNottinghamU.K.

Personalised recommendations