On Low-Fidelity Model Selection for Antenna Design Using Variable-Resolution EM Simulations

  • Slawomir Koziel
  • Stanislav Ogurtsov
  • Leifur Leifsson
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 256)

Abstract

One of the most important tools of antenna design is electromagnetic (EM) simulation. High-fidelity simulations offer accurate evaluation of the antenna performance, however, they are computationally expensive. As a result, employing EM solvers in automated antenna design using numerical optimization techniques is quite challenging. A possible workaround are surrogate-based optimization (SBO) methods. In case of antennas, the generic way to construct the surrogate is through coarse-discretization EM simulations that are faster but, at the same time, less accurate. For most SBO algorithms, quality of such low-fidelity models may be critical for performance. In this work, we investigate the trade-offs between the speed and the accuracy of the low-fidelity antenna models as well as the impact of the model selection on the quality of the design produced by the SBO algorithm as well as the computational cost of the optimization process. Our considerations are illustrated using examples.

Keywords

Computer-Aided Design (CAD) Antenna Design Electromagnetic Simulation Surrogate-based Optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schantz, H.: The art and science of ultrawideband antennas. Artech House (2007)Google Scholar
  2. 2.
    Petosa, A.: Dielectric Resonator Antenna Handbook. Artech House (2007)Google Scholar
  3. 3.
    Haupt, R.L.: Antenna design with a mixed integer genetic algorithm. IEEE Trans. Antennas Propag. 55(3), 577–582 (2007)CrossRefGoogle Scholar
  4. 4.
    Kerkhoff, A.J., Ling, H.: Design of a band-notched planar monopole antenna using genetic algorithm optimization. IEEE Trans. Antennas Propag. 55(3), 604–610 (2007)CrossRefGoogle Scholar
  5. 5.
    Pantoja, M.F., Meincke, P., Bretones, A.R.: A hybrid genetic algorithm space-mapping tool for the optimization of antennas. IEEE Trans. Antennas Propag. 55(3), 777–781 (2007)CrossRefGoogle Scholar
  6. 6.
    Jin, N., Rahmat-Samii, Y.: Parallel particle swarm optimization and finite- difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs. IEEE Trans. Antennas Propag. 53(11), 3459–3468 (2005)CrossRefGoogle Scholar
  7. 7.
    Halehdar, A., Thiel, D.V., Lewis, A., Randall, M.: Multiobjective optimization of small meander wire dipole antennas in a fixed area using ant colony system. Int. J. RF and Microwave CAE 19(5), 592–597 (2009)CrossRefGoogle Scholar
  8. 8.
    Jin, N., Rahmat-Samii, Y.: Analysis and particle swarm optimization of correlator antenna arrays for radio astronomy applications. IEEE Trans. Antennas Propag. 56(5), 1269–1279 (2008)CrossRefGoogle Scholar
  9. 9.
    Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Søndergaard, J.: Space mapping: the state of the art. IEEE Trans. Microwave Theory Tech. 52(1), 337–361 (2004)CrossRefGoogle Scholar
  10. 10.
    Koziel, S., Bandler, J.W., Madsen, K.: A space mapping framework for engineering optimization: theory and implementation. IEEE Trans. Microwave Theory Tech. 54(10), 3721–3730 (2006)CrossRefGoogle Scholar
  11. 11.
    Koziel, S., Ciaurri, D.E., Leifsson, L.: Surrogate-based methods. In: Koziel, S., Yang, X.-S. (eds.) COMA. SCI, vol. 356, pp. 33–59. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Rayas-Sánchez, J.E.: EM-based optimization of microwave circuits using artificial neural networks: the state-of-the-art. IEEE Trans. Microwave Theory Tech. 52(1), 420–435 (2004)CrossRefGoogle Scholar
  13. 13.
    Kabir, H., Wang, Y., Yu, M., Zhang, Q.J.: Neural network inverse modeling and applications to microwave filter design. IEEE Trans. Microwave Theory Tech. 56(4), 867–879 (2008)CrossRefGoogle Scholar
  14. 14.
    Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Statistics and Computing 14(3), 199–222 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Meng, J., Xia, L.: Support-vector regression model for millimeter wave transition. Int. J. Infrared and Milimeter Waves 28(5), 413–421 (2007)CrossRefGoogle Scholar
  16. 16.
    Buhmann, M.D., Ablowitz, M.J.: Radial Basis Functions: Theory and Implementations. Cambridge University (2003)Google Scholar
  17. 17.
    Simpson, T.W., Peplinski, J., Koch, P.N., Allen, J.K.: Metamodels for computer-based engineering design: survey and recommendations. Engineering with Computers 17(2), 129–150 (2001)CrossRefMATHGoogle Scholar
  18. 18.
    Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization, Prog. Aerospace Sciences 45(1-3), 50–79 (2009)CrossRefGoogle Scholar
  19. 19.
    Amari, S., LeDrew, C., Menzel, W.: Space-mapping optimization of planar coupled-resonator microwave filters. IEEE Trans. Microwave Theory Tech. 54(5), 2153–2159 (2006)CrossRefGoogle Scholar
  20. 20.
    Koziel, S., Cheng, Q.S., Bandler, J.W.: Space mapping. IEEE Microwave Magazine 9(6), 105–122 (2008)CrossRefGoogle Scholar
  21. 21.
    Swanson, D., Macchiarella, G.: Microwave filter design by synthesis and optimization. IEEE Microwave Magazine 8(2), 55–69 (2007)CrossRefGoogle Scholar
  22. 22.
    Rautio, J.C.: Perfectly calibrated internal ports in EM analysis of planar circuits. In: IEEE MTT-S Int. Microwave Symp. Dig., Atlanta, GA, pp. 1373–1376 (2008)Google Scholar
  23. 23.
    Cheng, Q.S., Rautio, J.C., Bandler, J.W., Koziel, S.: Progress in simulator-based tuning—the art of tuning space mapping. IEEE Microwave Magazine 11(4), 96–110 (2010)CrossRefGoogle Scholar
  24. 24.
    Echeverria, D., Hemker, P.W.: Space mapping and defect correction. CMAM The International Mathematical Journal Computational Methods in Applied Mathematics 5(2), 107–136 (2005)MathSciNetMATHGoogle Scholar
  25. 25.
    Koziel, S.: Shape-preserving response prediction for microwave design optimization. IEEE Trans. Microwave Theory and Tech. 58(11), 2829–2837 (2010)CrossRefGoogle Scholar
  26. 26.
    Koziel, S.: Adaptively adjusted design specifications for efficient optimization of microwave structures. Progress in Electromagnetic Research B (PIER B) 21, 219–234 (2010)Google Scholar
  27. 27.
    Couckuyt, I., Declercq, F., Dhaene, T., Rogier, H., Knockaert, L.: Surrogate-based infill optimization applied to electromagnetic problems. Int. J. RF and Microwave CAE 20(5), 492–501 (2010)CrossRefGoogle Scholar
  28. 28.
    CST Microwave Studio, 2012. CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany (2012)Google Scholar
  29. 29.
    HFSS. Release 13.0, ANSYS (2010), http://www.ansoft.com/products/hf/hfss/
  30. 30.
    Taflove, A., Hagness, S.C.: Computational electrodynamics: the finite-difference time-domain method, 3rd edn. Artech House (2006)Google Scholar
  31. 31.
    Lin, J.-M.: The Finite Element Method in Electromagnetics, 2nd edn. Wiley-IEEE Press (2002)Google Scholar
  32. 32.
    Harrington, R.F.: Field Computation by Moment Methods. Wiley-IEEE Press (1993)Google Scholar
  33. 33.
    Makarov, S.: Antenna and EM modeling with Matlab. Wiley-Interscience (2002)Google Scholar
  34. 34.
    Chen, Z.N.: Wideband microstrip antennas with sandwich substrate. IET Microw. Ant. Prop. 2(6), 538–546 (2008)CrossRefGoogle Scholar
  35. 35.
    Koziel, S., Bandler, J.W., Madsen, K.: Space mapping with adaptive response correction for microwave design optimization. IEEE Trans. Microwave Theory Tech. 57(2), 478–486 (2009)CrossRefGoogle Scholar
  36. 36.
    Alexandrov, N.M., Dennis, J.E., Lewis, R.M., Torczon, V.: A trust region framework for managing use of approximation models in optimization. Struct. Multidisciplinary Optim. 15(1), 16–23 (1998)CrossRefGoogle Scholar
  37. 37.
    Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods. MPS-SIAM Series on Optimization (2000)Google Scholar
  38. 38.
    Wi, S.-H., Lee, Y.-S., Yook, J.-G.: Wideband Microstrip Patch Antenna with U-shaped Parasitic Elements. IEEE Trans. Antennas Propagat. 55(4), 1196–1199 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Slawomir Koziel
    • 1
  • Stanislav Ogurtsov
    • 1
  • Leifur Leifsson
    • 1
  1. 1.Engineering Optimization & Modeling Center, School of Science and EngineeringReykjavik UniversityReykjavikIceland

Personalised recommendations