Controlling Turtles through State Machines: An Application to Pedestrian Simulation

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 256)


Undoubtedly, agent based modelling and simulation (ABMS) has been recognised as a promising technique for studying complex phenomena. Due to the attention that it has attracted, a significant number of platforms have been proposed, the majority of which target reactive agents, i.e. agents with relatively simple behaviours. Thus, little has been done toward the introduction of richer agent oriented programming constructs that will enhance the platforms’ modelling capabilities and could potentially lead to the implementation of more sophisticated models. This paper discusses TSTATES, a domain specific language, together with an execution layer that runs on top of a widely accepted agent simulation environment and presents its application to modelling pedestrian simulation in an underground station scenario.


Agent Simulation Platforms Agent Programming Languages Crowd Simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davidsson, P., Holmgren, J., Kyhlbäck, H., Mengistu, D., Persson, M.: Applications of agent based simulation. In: Antunes, L., Takadama, K. (eds.) MABS 2006. LNCS (LNAI), vol. 4442, pp. 15–27. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Nikolai, C., Madey, G.: Tools of the trade: A survey of various agent based modeling platforms. Journal of Artificial Societies and Social Simulation 12, 2 (2009)Google Scholar
  3. 3.
    Allan, R.J.: Survey of agent based modelling and simulation tools. Technical Report DL-TR-2010-007. DL Technical Reports (2010)Google Scholar
  4. 4.
    Wilensky, U.: Netlogo. Center for Connected Learning and Computer-based Modelling. Northwestern University, Evanston, IL (1999),
  5. 5.
    Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based simulation platforms: Review and development recommendations. Simulation 82, 609–623 (2006)CrossRefGoogle Scholar
  6. 6.
    Lytinen, S.L., Railsback, S.F.: The evolution of agent-based simulation platforms: A review of netlogo 5.0 and relogo. In: Proceedings of the Fourth International Symposium on Agent-Based Modeling and Simulation, Vienna, Austria (2012)Google Scholar
  7. 7.
    Sakellariou, I., Kefalas, P., Stamatopoulou, I.: Enhancing Netlogo to Simulate BDI Communicating Agents. In: Darzentas, J., Vouros, G.A., Vosinakis, S., Arnellos, A. (eds.) SETN 2008. LNCS (LNAI), vol. 5138, pp. 263–275. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Sakellariou, I.: Turtles as state machines - agent programming in netlogo using state machines. In: Filipe, J., Fred, A.L.N. (eds.) Proceedings of the 4th International Conference on Agents and Artificial Intelligence, ICAART 2012. Agents, vol. 2, pp. 375–378. SciTePress (2012)Google Scholar
  9. 9.
    Konolige, K.: COLBERT: A language for reactive control in sapphira. In: Brewka, G., Habel, C., Nebel, B. (eds.) KI 1997. LNCS, vol. 1303, pp. 31–52. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  10. 10.
    Loetzsch, M., Risler, M., Jungel, M.: Xabsl - a pragmatic approach to behavior engineering. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5124–5129 (2006)Google Scholar
  11. 11.
    Sakellariou, I.: Agent based modelling and simulation using state machines. In: Pina, N., Kacprzyk, J., Obaidat, M.S. (eds.) SIMULTECH, pp. 270–279. SciTePress (2012)Google Scholar
  12. 12.
    Bandini, S., Federici, M.L., Vizzari, G.: Situated cellular agents approach to crowd modeling and simulation. Cybernetics and Systems 38, 729–753 (2007)CrossRefMATHGoogle Scholar
  13. 13.
    Risler, M., von Stryk, O.: Formal behavior specification of multi-robot systems using hierarchical state machines in XABSL. In: Workshop on Formal Models and Methods for Multi-Robot Systems, AAMAS 2008, Estoril, Portugal (2008)Google Scholar
  14. 14.
    Stefano, A., Santoro, C.: Supporting agent development in erlang through the exat platform. In: Unland, R., Calisti, M., Klusch, M., Walliser, M., Brantschen, S., Calisti, M., Hempfling, T. (eds.) Software Agent-Based Applications, Platforms and Development Kits. Whitestein Series in Software Agent Technologies and Autonomic Computing, pp. 47–71. Birkhuser, Basel (2005)CrossRefGoogle Scholar
  15. 15.
    Klügl, F., Herrler, R., Fehler, M.: Sesam: implementation of agent-based simulation using visual programming. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2006, pp. 1439–1440. ACM, New York (2006)CrossRefGoogle Scholar
  16. 16.
    North, M.J., Howe, T.R., Collier, N.T., Vos, J.R.: A declarative model assembly infrastructure for verification and validation. In: Advancing Social Simulation: The First World Congress. Springer, Heidelberg (2007)Google Scholar
  17. 17.
    Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In: Allen, J., Fikes, R., Sandewall, E. (eds.) Proceedings of the 2nd International Conference on Principles of Knowledge Representation and Reasoning (KR 1991), pp. 473–484. Morgan Kaufmann Publishers Inc. (1991)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Applied InformaticsUniversity of MacedoniaThessalonikiGreece

Personalised recommendations