Advertisement

A Multi-GPU Approach to Fast Wildfire Hazard Mapping

  • Donato D’Ambrosio
  • Salvatore Di Gregorio
  • Giuseppe Filippone
  • Rocco Rongo
  • William Spataro
  • Giuseppe A. Trunfio
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 256)

Abstract

Burn probability maps (BPMs) are among the most effective tools to support strategic wildfire and fuels management. In such maps, an estimate of the probability to be burned by a wildfire is assigned to each point of a raster landscape. A typical approach to build BPMs is based on the explicit propagation of thousands of fires using accurate simulation models. However, given the high number of required simulations, for a large area such a processing usually requires high performance computing. In this paper, we propose a multi-GPU approach for accelerating the process of BPM building. The paper illustrates some alternative implementation strategies and discusses the achieved speedups on a real landscape.

Keywords

GPGPU Cellular Automata Wildfire Simulation Wildfire Susceptibility Hazard Maps 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carmel, Y., Paz, S., Jahashan, F., Shoshany, M.: Assessing fire risk using Monte Carlo simulations of fire spread. Forest Ecology and Management 257(1), 370–377 (2009)CrossRefGoogle Scholar
  2. 2.
    Ager, A., Finney, M.: Application of wildfire simulation models for risk analysis. In: Geophysical Research Abstracts. EGU2009-5489, EGU General Assembly, vol. 11 (2009)Google Scholar
  3. 3.
    Sullivan, A.: Wildland surface fire spread modelling, 1990-2007. 3: Simulation and mathematical analogue models. International Journal of Wildland Fire 18, 387–403 (2009)CrossRefGoogle Scholar
  4. 4.
    Lopes, A.M.G., Cruz, M.G., Viegas, D.X.: Firestation - an integrated software system for the numerical simulation of fire spread on complex topography. Environmental Modelling and Software 17(3), 269–285 (2002)CrossRefGoogle Scholar
  5. 5.
    Trunfio, G.A.: Predicting wildfire spreading through a hexagonal cellular automata model. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 385–394. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Peterson, S.H., Morais, M.E., Carlson, J.M., Dennison, P.E., Roberts, D.A., Moritz, M.A., Weise, D.R.: Using HFIRE for spatial modeling of fire in shrublands. Technical Report PSW-RP-259, U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, CA (2009)Google Scholar
  7. 7.
    Trunfio, G.A., D’Ambrosio, D., Rongo, R., Spataro, W., Di Gregorio, S.: A new algorithm for simulating wildfire spread through cellular automata. ACM Transactions on Modeling and Computer Simulation 22(1), 1–26 (2011)CrossRefGoogle Scholar
  8. 8.
    Avolio, M.V., Di Gregorio, S., Lupiano, V., Trunfio, G.A.: Simulation of wildfire spread using cellular automata with randomized local sources. In: Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 279–288. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fuels. Technical Report INT-115, U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT (1972)Google Scholar
  10. 10.
    Alexander, M.: Estimating the length-to-breadth ratio of elliptical forest fire patterns. In: Proc. 8th Conf. Fire and Forest Meteorology, pp. 287–304 (1985)Google Scholar
  11. 11.
    Rongo, R., Spataro, W., D’Ambrosio, D., Avolio, M.V., Trunfio, G.A., Di Gregorio, S.: Lava flow hazard evaluation through cellular automata and genetic algorithms: an application to Mt Etna volcano. Fundamenta Informaticae 87(2), 247–267 (2008)MATHGoogle Scholar
  12. 12.
    Rongo, R., Lupiano, V., Avolio, M.V., D’Ambrosio, D., Spataro, W., Trunfio, G.A.: Cellular automata simulation of lava flows - applications to civil defense and land use planning with a cellular automata based methodology. In: Proceedings of SIMULTECH 2011 (2011)Google Scholar
  13. 13.
    Filippone, G., Spataro, W., Spingola, G., D’Ambrosio, D., Rongo, R., Perna, G., Di Gregorio, S.: GPGPU programming and cellular automata: Implementation of the SCIARA lava flow simulation code. In: 23rd European Modeling and Simulation Symposium (EMSS), Rome, Italy, September 12-14 (2011)Google Scholar
  14. 14.
    D’Ambrosio, D., Filippone, G., Rongo, R., Spataro, W., Trunfio, G.: Cellular automata and GPGPU: an application to lava flow modeling. International Journal of Grid and High Performance Computing 4(3), 30–47 (2012)CrossRefGoogle Scholar
  15. 15.
    CUDA C Programming Guide: v. 3.2 (2010)Google Scholar
  16. 16.
    Anderson, H.: Predicting wind-driven wildland fire size and shape. Technical Report INT-305, U.S Department of Agriculture, Forest Service (1983)Google Scholar
  17. 17.
    Ager, A.A., Vaillant, N.M., Finney, M.A.: A comparison of landscape fuel treatment strategies to mitigate wildland fire risk in the urban interface and preserve old forest structure. Forest Ecology and Management 259(8), 1556–1570 (2010)CrossRefGoogle Scholar
  18. 18.
    Xue, H., Gu, F., Hu, X.: Data assimilation using sequential monte carlo methods in wildfire spread simulation. ACM Trans. Model. Comput. Simul. 22(4), 1–25 (2012)CrossRefGoogle Scholar
  19. 19.
    Crisci, G.M., Avolio, M.V., Behncke, B., D’Ambrosio, D., Di Gregorio, S., Lupiano, V., Neri, M., Rongo, R., Spataro, W.: Predicting the impact of lava flows at Mount Etna, Italy. Journal of Geophysical Research: Solid Earth 115(B4) (2010)Google Scholar
  20. 20.
    Blecic, I., Cecchini, A., Trunfio, G.A.: A general-purpose geosimulation infrastructure for spatial decision support. Transactions on Computational Science 6, 200–218 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Donato D’Ambrosio
    • 1
  • Salvatore Di Gregorio
    • 1
  • Giuseppe Filippone
    • 1
  • Rocco Rongo
    • 1
  • William Spataro
    • 1
  • Giuseppe A. Trunfio
    • 2
  1. 1.Department of Mathematics and Computer ScienceUniversity of CalabriaRende (CS)Italy
  2. 2.DADU, University of SassariAlghero (SS)Italy

Personalised recommendations