Skip to main content

Simulation and Realistic Workloads to Support the Meta-scheduling of Scientific Workflows

  • Chapter
Simulation and Modeling Methodologies, Technologies and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 256))

Abstract

When heterogeneous computing resources are integrated to create more powerful execution environments, new scheduling strategies are necessary to allocate work units to available resources. In this paper we apply simulation results to schedule the execution of scientific workflows in a resource integration platform. A simulator built upon Alea and GridSim has been implemented to simulate the behaviour of the grid and cluster computing resources integrated in the platform. Simulations are generated using realistic workloads and then analysed by a meta-scheduler to decide the most suitable resource for each workflow task execution. To improve simulation results synthetic workloads are dynamically created considering the current resources state and a set of log-recorded historical executions. The paper also reports the impact of the proposed techniques when experimentally applied to the execution of the Inspiral analysis workflow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco (2003)

    Google Scholar 

  2. Rahman, M., Ranjan, R., Buyya, R., Benatallah, B.: A taxonomy and survey on autonomic management of applications in grid computing environments. Concurrency and Computation: Practice and Experience 23, 1990–2019 (2011)

    Article  Google Scholar 

  3. Yu, J., Buyya, R.: A taxonomy of scientific workflow systems for grid computing. SIGMOD Record 34, 44–49 (2005)

    Article  Google Scholar 

  4. Kertész, A., Kacsuk, P.: GMBS: A new middleware service for making grids interoperable. Future Generation Computer Systems 26, 542–553 (2010)

    Article  Google Scholar 

  5. Kacsuk, P., Kiss, T., Sipos, G.: Solving the grid interoperability problem by P-GRADE portal at workflow level. Futur. Gener. Comp. Syst. 24, 744–751 (2008)

    Article  Google Scholar 

  6. Hamscher, V., Schwiegelshohn, U., Streit, A., Yahyapour, R.: Evaluation of Job-Scheduling Strategies for Grid Computing. In: Buyya, R., Baker, M. (eds.) GRID 2000. LNCS, vol. 1971, pp. 191–202. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Abraham, A., Liu, H., Zhang, W., Chang, T.G.: Scheduling Jobs on Computational Grids Using Fuzzy Particle Swarm Algorithm. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006, Part II. LNCS (LNAI), vol. 4252, pp. 500–507. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Yu, Z., Shi, W.: An Adaptive Rescheduling Strategy for Grid Workflow Applications. In: IEEE International Parallel and Distributed Processing Symposium, IPDPS 2007, pp. 1–8 (2007)

    Google Scholar 

  9. Ludwig, S.A., Moallem, A.: Swarm Intelligence Approaches for Grid Load Balancing. Journal of Grid Computing 9, 279–301 (2011)

    Article  Google Scholar 

  10. Feitelson, D.G.: Workload Modeling for Performance Evaluation. In: Calzarossa, M.C., Tucci, S. (eds.) Performance 2002. LNCS, vol. 2459, pp. 114–141. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Iosup, A., Epema, D.H.J.: Grid Computing Workloads. IEEE Internet Computing 15, 19–26 (2011)

    Article  Google Scholar 

  12. Li, H., Groep, D., Wolters, L.: Workload characteristics of a multi-cluster supercomputer. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2004. LNCS, vol. 3277, pp. 176–193. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Fabra, J., Hernández, S., Álvarez, P., Ezpeleta, J.: A framework for the flexible deployment of scientific workflows in grid environments. In: Proceedings of the Third International Conference on Cloud Computing, GRIDs, and Virtualization, Cloud Computing 2012, pp. 1–8 (2012)

    Google Scholar 

  14. HTCondor Middleware, http://research.cs.wisc.edu/htcondor/ (accessed March 5, 2013)

  15. Klusáček, D., Rudová, H.: Alea 2 – Job Scheduling Simulator. In: Proceedings of the 3rd International ICST Conference on Simulation Tools and Techniques, SIMUTools 2010 (2010)

    Google Scholar 

  16. Sulistio, A., Cibej, U., Venugopal, S., Robic, B., Buyya, R.: A toolkit for modelling and simulating data Grids: an extension to GridSim. Concurrency and Computation: Practice and Experience 20, 1591–1609 (2008)

    Article  Google Scholar 

  17. Hernández, S., Fabra, J., Álvarez, P., Ezpeleta, J.: A Simulation-based Scheduling Strategy for Scientific Workflows. In: Proceedings of the 2nd International Conference on Simulation and Modeling Methodologies, Technologies and Applications. SIMULTECH 2012, pp. 61–70 (2012)

    Google Scholar 

  18. Sargent, R.G.: Verification and validation of simulation models. In: Proceedings of the 2010 Winter Simulation Conference, WSC 2010, pp. 166–183 (2010)

    Google Scholar 

  19. gLite Middleware, http://glite.cern.ch/ (accessed March 5, 2013)

  20. Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M.: Workflows for e-Science: Scientific Workflows for Grids. Springer-Verlag New York, Inc., Secaucus (2006)

    Google Scholar 

  21. Iosup, A., Sonmez, O., Anoep, S., Epema, D.: The performance of bags-of-tasks in large-scale distributed systems. In: Proceedings of the 17th International Symposium on High Performance Distributed Computing, HPDC 2008, pp. 97–108 (2008)

    Google Scholar 

  22. Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: modeling the characteristics of rigid jobs. Journal of Parallel and Distributed Computing 63, 1105–1122 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hernández, S., Fabra, J., Álvarez, P., Ezpeleta, J. (2014). Simulation and Realistic Workloads to Support the Meta-scheduling of Scientific Workflows. In: Obaidat, M., Filipe, J., Kacprzyk, J., Pina, N. (eds) Simulation and Modeling Methodologies, Technologies and Applications. Advances in Intelligent Systems and Computing, vol 256. Springer, Cham. https://doi.org/10.1007/978-3-319-03581-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03581-9_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03580-2

  • Online ISBN: 978-3-319-03581-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics