Advertisement

Property Models and Process Simulation

  • Anton Alexandru KissEmail author
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Process simulation is used for the design, development, analysis, and optimization of any chemical process, including biodiesel production. Property models provide the basis of computer simulations, being responsible for the accuracy or inaccuracy of the simulation results. This chapter summarizes the requirements for a successful simulation of a biodiesel production process: recommended property models, best simulation approach (e.g. shortcut, rigorous or hybrid methods), use of equilibrium or rate-based models, and reaction kinetics.

References

  1. Aspen Technology (2010) Aspen Plus: User guide, vol 1 & 2. Aspen Technology, Burlington, USGoogle Scholar
  2. Dimian AC, Omota F, Bliek A (2004) Entrainer-enhanced reactive distillation. Chem Eng Process 43:411–420. doi: 10.1016/S0255-2701(03)00125-9 CrossRefGoogle Scholar
  3. Dimian AC, Bildea CS, Omota F, Kiss AA (2009) Innovative process for fatty acid esters by dual reactive distillation. Comput Chem Eng 33:743–750. doi: 10.1016/j.compchemeng.2008.09.020 CrossRefGoogle Scholar
  4. Espinosa S, Fornari T, Bottini SB, Brignole EA (2002) Phase equilibria in mixtures of fatty oils and derivatives with near critical fluids using the GC-EOS model. J Supercrit Fluids 23:91–102. doi: 10.1016/S0896-8446(02)00025-6 CrossRefGoogle Scholar
  5. Kiss AA (2009) Novel process for biodiesel by reactive absorption. Sep Purif Technol 69:280–287. doi: 10.1016/j.seppur.2009.08.004 CrossRefGoogle Scholar
  6. Kiss AA (2010) Separative reactors for integrated production of bioethanol and biodiesel. Comput Chem Eng 34:812–820. doi: 10.1016/j.compchemeng.2009.09.005 CrossRefGoogle Scholar
  7. Kiss AA (2011) Heat-integrated reactive distillation process for synthesis of fatty esters. Fuel Process Technol 92:1288–1296. doi:  10.1016/j.fuproc.2011.02.003
  8. Kiss AA, Bildea CS (2011) Integrated reactive absorption process for synthesis of fatty esters. Bioresour Technol 102:490–498. doi: 10.1016/j.biortech.2010.08.066 CrossRefGoogle Scholar
  9. Kiss AA, Dimian AC, Rothenberg G (2006a) Solid acid catalysts for biodiesel production—Towards sustainable energy. Adv Synth Catal 348:75–81. doi: 10.1002/adsc.200505160 CrossRefGoogle Scholar
  10. Kiss AA, Omota F, Dimian AC, Rothenberg G (2006b) The heterogeneous advantage: biodiesel by catalytic reactive distillation. Top Catal 40:141–150. doi: 10.1007/s11244-006-0116-4 CrossRefGoogle Scholar
  11. Kiss AA, Dimian AC, Rothenberg G (2008) Biodiesel by catalytic reactive distillation powered by metal oxides. Energy Fuels 22:598–604. doi: 10.1021/ef700265y CrossRefGoogle Scholar
  12. Kiss AA, Segovia-Hernandez JG, Bildea CS, Miranda-Galindo EY, Hernandez S (2012) Reactive DWC leading the way to FAME and fortune. Fuel 95:352–359. doi: 10.1016/j.fuel.2011.12.064 CrossRefGoogle Scholar
  13. Kuramochi H, Maeda K, Kato S, Osako M, Nakamura K, Sakai S (2009) Application of UNIFAC models for prediction of vapor-liquid and liquid-liquid equilibria relevant to separation and purification processes of crude biodiesel fuel. Fuel 88:1472–1477. doi: 10.1016/j.fuel.2009.01.017 CrossRefGoogle Scholar
  14. Morad NA, Mustafa Kamal MAA, Panau F, Yew TW (2000) Liquid specific heat capacity estimation for fatty acids, triacylglycerols, and vegetable oils based on their fatty acid composition. J Am Oil Chem Soc 77:1001–1005. doi: 10.1007/s11746-000-0158-6 CrossRefGoogle Scholar
  15. Ndiaye PM, Franceschi E, Oliveira D, Dariva C, Tavares FW, Oliveira JV (2006) Phase behavior of soybean oil, castor oil and their fatty acid ethyl esters in carbon dioxide at high pressures. J Supercrit Fluids 37:29–37. doi: 10.1016/j.supflu.2005.08.002 CrossRefGoogle Scholar
  16. Okuhara T (2002) Water-tolerant solid acid catalysts. Chem Rev 102:3641–3665. doi: 10.1021/cr0103569 CrossRefGoogle Scholar
  17. Omota F, Dimian AC, Bliek A (2003a) Fatty acid esterification by reactive distillation. Part 1: Equilibrium-based design. Chem Eng Sci 58:3159–3174. doi: 10.1016/S0009-2509(03)00165-9 CrossRefGoogle Scholar
  18. Omota F, Dimian AC, Bliek A (2003b) Fatty acid esterification by reactive distillation. Part 2: Kinetics-based design for sulphated zirconia catalysts. Chem Eng Sci 58:3175–3185. doi: 10.1016/S0009-2509(03)00154-4 CrossRefGoogle Scholar
  19. Poling BE, Prausnitz JM, O’Connell JP (2004) The properties of gases and liquids. McGraw-Hill, New YorkGoogle Scholar
  20. Siang LC, Manan ZA, Sarmidi MR (2003) Simulation modeling of the phase behaviour of palm oil with supercritical carbon dioxide. In: Proceedings of international conference on chemical and bioprocess engineering. University Malaysia Sabah, Kota Kinabatu, pp 427–434Google Scholar
  21. Yuan W, Hansen AC, Zhang Q (2005) Vapor pressure and normal boiling point predictions for pure methyl esters and biodiesel fuels. Fuel 84:943–950. doi: 10.1016/j.fuel.2005.01.007 CrossRefGoogle Scholar
  22. Zong L, Ramanathan S, Chen CC (2010) Fragment-based approach for estimating thermophysical properties of fats and vegetable oils for modeling biodiesel production processes. Ind Eng Chem Res 49:876–886. doi: 10.1021/ie900513k CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.ArnhemThe Netherlands

Personalised recommendations