Skip to main content

Biodiesel and Fatty Esters

  • Chapter
  • First Online:
  • 1763 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

This chapter provides an overview of biodiesel (basically a mixture of fatty esters) as renewable fuel, covering the market developments and trends, chemical composition and characteristics, properties and performance, complementary use as diesel fuel, main synthesis routes (e.g. esterification or trans-esterification), various catalysts used for manufacturing (e.g. homogeneous, solid acids and solid base catalysts) and industrial production processes (e.g. batch, continuous, supercritical, enzymatic, multi-step, reactive separations).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdullah AZ, Razali N, Mootabadi H, Salamatinia B (2007) Critical technical areas for future improvement in biodiesel technologies. Environ Res Lett 2:034001. doi:10.1088/1748-9326/2/3/034001

    Article  Google Scholar 

  • Atadashi IM, Aroua MK, Aziz ARA, Sulaiman NMN (2013) The effects of catalysts in biodiesel production: a review. J Ind Eng Chem 19:14–26. doi:10.1016/j.jiec.2012.07.009

    Article  Google Scholar 

  • Balat M, Balat H (2008) A critical review of bio-diesel as a vehicular fuel. Energy Convers Manag 49:2727–2741. doi:10.1016/j.enconman.2008.03.016

    Article  Google Scholar 

  • Blagoev M, Bizzari S, Gubler R, Funada C, Yi Z (2008) Biodiesel. CEH Marketing Research Report 205.0000 A. Chemical Economics Handbook—SRI Consulting

    Google Scholar 

  • Bournay L, Casanave D, Delfort B, Hillion G, Chodorge JA (2005) New heterogeneous process for biodiesel production: a way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Catal Today 106:190–192. doi:10.1016/j.cattod.2005.07.181

    Article  Google Scholar 

  • Bowman M, Hilligoss D, Rasmussen S, Thomas R (2006) Biodiesel: a renewable and biodegradable fuel. Hydrocarbon Process 85:103–106

    Google Scholar 

  • Canoira L, Galean JG, Alcantara R, Lapuerta M, Garcia-Contreras R (2010) Fatty acid methyl esters (FAMEs) from castor oil: production process assessment and synergistic effects in its properties. Renew Energy 35:208–217. doi:10.1016/j.renene.2009.05.006

    Article  Google Scholar 

  • Chen YH, Huang YH, Lin RH, Shang NC (2010) A continuous-flow biodiesel production process using a rotating packed bed. Bioresour Technol 101:668–673. doi:10.1016/j.biortech.2009.08.081

    Article  Google Scholar 

  • Chen X, Du W, Liu DH, Ding FX (2008) Lipase-mediated methanolysis of soybean oils for biodiesel production. J Chem Technol Biotechnol 83:71–76. doi:10.1002/jctb.1786

    Article  Google Scholar 

  • Chen X, Xu Z, Okuhara T (1999) Liquid phase esterification of acrylic acid with 1-butanol catalyzed by solid acid catalysts. Appl Catal A Gen 180:261–269

    Article  Google Scholar 

  • Corma A, Rodriguez M, Sanchez N, Aracil J (1994) Process for the selective production of monoesters of diols and triols using zeolitic catalysts, WO9413617

    Google Scholar 

  • da Silva ND, Batistella CB, Maciel R, Maciel MRW (2009) Biodiesel Production from castor oil: optimization of alkaline ethanolysis. Energy Fuels 23:5636–5642. doi:10.1021/ef900403j

    Article  Google Scholar 

  • Dale B (2003) ‘Greening’ the chemical industry: research and development priorities for biobased industrial products. J Chem Technol Biotechnol 78:1093–1103. doi:10.1002/jctb.850

    Article  Google Scholar 

  • de Oliveira JS, Leite PM, de Souza LM, Mello VM, Silva EC, Rubim JC, Meneghetti SMP, Suarez PAZ (2009) Characteristics and composition of Jatropha Gossypifolia and Jatropha Curcas L. oils and application for biodiesel production. Biomass Bioenergy 33:449–453

    Google Scholar 

  • Demirbas A (2008) Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy Convers Manag 49:125–130. doi:10.1016/j.enconman.2007.05.002

    Article  Google Scholar 

  • Demirbas AH (2009) Inexpensive oil and fats feedstocks for production of biodiesel. Energy Edu Sci Technol Part A Energy Sci Res 23:1–13

    Google Scholar 

  • Di Serio M, Tesser R, Pengmei L, Santacesaria E (2008) Heterogeneous catalysts for biodiesel production. Energy Fuels 22:207–217. doi:10.1021/ef700250g

    Article  Google Scholar 

  • Dimian AC, Bildea CS, Omota F, Kiss AA (2009) Innovative process for fatty acid esters by dual reactive distillation. Comput Chem Eng 33:743–750. doi:10.1016/j.compchemeng.2008.09.020

    Article  Google Scholar 

  • Dussan KJ, Cardona CA, Giraldo OH, Gutierrez LF, Perez VH (2010) Analysis of a reactive extraction process for biodiesel production using a lipase immobilized on magnetic nanostructures. Bioresour Technol 101:9542–9549. doi:10.1016/j.biortech.2010.07.044

    Article  Google Scholar 

  • Encinar JM, Gonzalez JF, Rodriguez-Reinares A (2005) Biodiesel from used frying oil. Variables affecting the yields and characteristics of the biodiesel. Ind Eng Chem Res 44:5491–5499. doi:10.1021/ie040214f

    Article  Google Scholar 

  • Endalew AK, Kiros Y, Zanzi R (2011) Inorganic heterogeneous catalysts for biodiesel production from vegetable oils. Biomass Bioenergy 35:3787–3809. doi:10.1016/j.biombioe.2011.06.011

    Article  Google Scholar 

  • Feofilova EP, Sergeeva YE, Ivashechkin AA (2010) Biodiesel-fuel: content, production, producers, contemporary biotechnology (Review). Appl Biochem Microbiol 46:369–378. doi:10.1134/S0003683810040010

    Article  Google Scholar 

  • Francisco EC, Neves DB, Jacob-Lopes E, Franco TT (2010) Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biotechnol 85:395–403. doi:10.1002/jctb.2338

    Article  Google Scholar 

  • Gomez-Castro FI, Rico-Ramirez V, Segovia-Hernandez JG, Hernandez-Castro S (2011) Esterification of fatty acids in a thermally coupled reactive distillation column by the two-step supercritical methanol method. Chem Eng Res Des 89:480–490. doi:10.1016/j.cherd.2010.08.009

    Article  Google Scholar 

  • Hanna MA, Isom L, Campbell J (2005) Biodiesel: current perspectives and future. J Sci Ind Res 64:854–857

    Google Scholar 

  • He BB, Singh AP, Thompson JC (2005) Experimental optimization of a continuous-flow reactive distillation reactor for biodiesel production. Trans ASAE 48:2237–2243

    Article  Google Scholar 

  • He BB, Singh AP, Thompson JC (2006) A novel continuous-flow reactor using reactive distillation for biodiesel production. Trans ASABE 49:107–112

    Article  Google Scholar 

  • He H, Wang T, Zhu S (2007) Continuous production of biodiesel fuel from vegetable oil using supercritical methanol process. Fuel 86:442–447. doi:10.1016/j.fuel.2006.07.035

    Article  Google Scholar 

  • Heidekum A, Harmer MA, Hoelderich WF (1999) Addition of carboxylic acids to cyclic olefins catalyzed by strong acidic ion-exchange resins. J Catal 181:217–222. doi:10.1006/jcat 1998.2300

    Article  Google Scholar 

  • Helwani Z, Othman MR, Aziz N, Kim J, Fernando WJN (2009) Solid heterogeneous catalysts for transesterification of triglycerides with methanol: a review. Appl Catal A 363:1–10. doi:10.1016/j.apcata.2009.05.021

    Article  Google Scholar 

  • Jena PC, Raheman H, Kumar GVP, Machavaram R (2010) Biodiesel production from mixture of mahua and simarouba oils with high free fatty acids. Biomass Bioenergy 34:1108–1116. doi:10.1016/j.biombioe.2010.02.019

    Article  Google Scholar 

  • Jothiramalingam R, Wang MK (2009) Review of recent developments in solid acid base, and enzyme catalysts (heterogeneous) for biodiesel production via transesterification. Ind Eng Chem Res 48:6162–6172. doi:10.1021/ie801872t

    Article  Google Scholar 

  • Kaita J, Mimura T, Fukuda N, Hatori Y (2002) Catalysts for transesterification. US Patent 6407269

    Google Scholar 

  • Kapilan N, Reddy RP (2008) Evaluation of methyl esters of mahua oil (Madhuca indica) as diesel fuel. J Am Oil Chem Soc 85:185–188. doi:10.1007/s11746-007-1179-5

    Article  Google Scholar 

  • Kaul S, Porwal J, Garg MO (2010) Parametric study of Jatropha seeds for biodiesel production by reactive extraction. J Am Oil Chem Soc 87:903–908. doi:10.1007/s11746-010-1566-1

    Article  Google Scholar 

  • Kiss AA (2009) Novel process for biodiesel by reactive absorption. Sep Purif Technol 69:280–287. doi:10.1016/j.seppur.2009.08.004

    Article  Google Scholar 

  • Kiss AA (2010) Separative reactors for integrated production of bioethanol and biodiesel. Comput Chem Eng 34:812–820. doi:10.1016/j.compchemeng.2009.09.005

    Article  Google Scholar 

  • Kiss AA (2011) Heat-integrated reactive distillation process for synthesis of fatty esters. Fuel Process Technol 92:1288–1296. doi:10.1016/j.fuproc.2011.02.003

    Article  Google Scholar 

  • Kiss AA (2013) Reactive distillation technology. In: Boodhoo K, Harvey A (eds) Process intensification technologies for green chemistry: Innovative engineering solutions for sustainable chemical processing. Wiley, New York, pp 251–274

    Google Scholar 

  • Kiss AA (2013b) Novel applications of dividing-wall column technology to biofuel production processes. J Chem Technol Biotechnol 88:1387–1404. doi:10.1002/jctb.4108

    Article  Google Scholar 

  • Kiss AA, Bildea CS (2012) A review on biodiesel production by integrated reactive separation technologies. J Chem Technol Biotechnol 87:861–879. doi:10.1002/jctb.3785

    Article  Google Scholar 

  • Kiss AA, Dimian AC, Rothenberg G (2006a) Solid acid catalysts for biodiesel production—towards sustainable energy. Adv Synth Catal 348:75–81. doi:10.1002/adsc.200505160

    Article  Google Scholar 

  • Kiss AA, Dimian AC, Rothenberg G (2008) Biodiesel by catalytic reactive distillation powered by metal oxides. Energy Fuels 22:598–604. doi:10.1021/ef700265y

    Article  Google Scholar 

  • Kiss AA, Omota F, Dimian AC, Rothenberg G (2006b) The heterogeneous advantage: biodiesel by catalytic reactive distillation. Top Catal 40:141–150. doi:10.1007/s11244-006-0116-4

    Article  Google Scholar 

  • Knothe G (2010) Biodiesel: current trends and properties. Top Catal 53:714–720. doi:10.1007/s11244-010-9457-0

    Article  Google Scholar 

  • Kralova I, Sjoblom J (2010) Biofuels-renewable energy sources: a review. J Dispersion Sci Technol 31:409–425. doi:10.1080/01932690903119674

    Article  Google Scholar 

  • Kulkarni MG, Dalai AK (2006) Waste cooking oil-an economical source for biodiesel: a review. Ind Eng Chem Res 45:2901–2913. doi:10.1021/ie0510526

    Article  Google Scholar 

  • Kulkarni MG, Dalai AK, Bakhshi NN (2006) Utilization of green seed canola oil for biodiesel production. J Chem Technol Biotechnol 81:1886–1893. doi:10.1002/jctb.1621

    Article  Google Scholar 

  • Kumar N, Sharma PB (2005) Jatropha curcus—a sustainable source for production of biodiesel. J Sci Ind Res 64:883–889

    Google Scholar 

  • Kusdiana D, Saka S (2004) Two-step preparation for catalyst-free biodiesel fuel production—hydrolysis and methyl esterification. Appl Biochem Biotechnol 113:781–791. doi:10.1385/ABAB:115:1-3:0781

    Article  Google Scholar 

  • Lai CC, Zullaikah S, Vali SR, Ju YH (2005) Lipase-catalyzed production of biodiesel from rice bran oil. J Chem Technol Biotechnol 80:331–337. doi:10.1002/jctb.1208

    Article  Google Scholar 

  • Lam MK, Lee MT, Mohamed AR (2010) Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol Adv 28:500–518. doi:10.1016/j.biotechadv.2010.03.002

    Article  Google Scholar 

  • Lee J, Saka S (2010) Biodiesel production by heterogeneous catalysts and supercritical technologies. Bioresour Technol 101:7191–7200. doi:10.1016/j.biortech.2010.04.071

    Article  Google Scholar 

  • Lee DW, Park YM, Lee KY (2009) Heterogeneous base catalysts for transesterification in biodiesel synthesis. Catal Surv Asia 13:63–77. doi:10.1007/s10563-009-9068-6

    Article  Google Scholar 

  • Liu B, Zhao Z (2007) Biodiesel production by direct methanolysis of oleaginous microbial biomass. J Chem Technol Biotechnol 82:775–780. doi:10.1002/jctb.1744

    Article  Google Scholar 

  • Lotero E, Liu YJ, Lopez DE, Suwannakarn K, Bruce D, Goodwin J (2005) Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res 44:5353–5363. doi:10.1021/ie049157g

    Article  Google Scholar 

  • Maddikeri GL, Pandit AB, Gogate PR (2012) Intensification approaches for biodiesel synthesis from waste cooking oil: a review. Ind Eng Chem Res 51:14610–14628. doi:10.1021/ie301675j

    Article  Google Scholar 

  • Maki-Arvela P, Snare M, Eranen K, Myllyoja J, Murzin DY (2008) Continuous decarboxylation of lauric acid over Pd/C catalyst. Fuel 87:3543–3549. doi:10.1016/j.fuel.2008.07.004

    Article  Google Scholar 

  • Mbaraka IK, Radu DR, Lin VSY, Shanks BH (2003) Organosulfonic acid-functionalized mesoporous silicas for the esterification of fatty acid. J Catal 219:329–336. doi:10.1016/S0021-9517(03)00193-3

    Article  Google Scholar 

  • Meher LC, Vidya Sagar D, Naik S (2006) Technical aspects of biodiesel production by transesterification – A review. Renew Sustaine Energy Rev 10:248–268. doi:10.1016/j.rser.2004.09.002

    Google Scholar 

  • Melero JA, Iglesias J, Morales G (2009) Heterogeneous acid catalysts for biodiesel production: current status and future challenges. Green Chem 11:1285–1308. doi:10.1039/B902086A

    Article  Google Scholar 

  • Minami E, Saka S (2006) Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process. Fuel 85:2479–2483. doi:10.1016/j.fuel.2006.04.017

    Article  Google Scholar 

  • Mittlebach M, Silberholtz A, Koncar M (1995) Novel aspects concerning acid-catalyzed alcoholysis of triglycerides, In: Proceedings of the 21st world congress of the international society for fats research, The Hague, pp 497–499

    Google Scholar 

  • Narasimharao K, Lee A, Wilson K (2007) Catalysts in production of biodiesel: a review. J Biobased Mater Bioenergy 1:19–30. doi:10.1166/jbmb.2007.0

    Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68. doi:10.1016/j.pecs.2010.01.003

    Article  Google Scholar 

  • Omota F, Dimian AC, Bliek A (2003a) Fatty acid esterification by reactive distillation. Part 1: equilibrium-based design. Chem Eng Sci 58:3159–3174. doi:10.1016/S0009-2509(03)00165-9

    Article  Google Scholar 

  • Omota F, Dimian AC, Bliek A (2003b) Fatty acid esterification by reactive distillation. Part 2: kinetics-based design for sulphated zirconia catalysts. Chem Eng Sci 58:3175–3185. doi:10.1016/S0009-2509(03)00154-4

    Article  Google Scholar 

  • Patel A, Brahmkhatri V, Singh N (2013) Biodiesel production by esterification of free fatty acid over sulfated zirconia. Renew Energy 51:227–233. doi:10.1016/j.renene.2012.09.040

    Article  Google Scholar 

  • Puhan S, Vedaraman N, Rambrahamam BV, Nagarajan G (2005) Mahua (Madhuca indica) seed oil: a source of renewable energy in India. J Sci Ind Res 64:890–896

    Google Scholar 

  • Refaat AA (2011) Biodiesel production using solid metal oxide catalysts. Int J Environ Sci Technol 8:203–221

    Article  Google Scholar 

  • Santacesaria E, Vicente GM, Di Serio M, Tesser R (2012) Main technologies in biodiesel production: state of the art and future challenges. Catal Today 195:2–13. doi:10.1016/j.cattod.2012.04.057

    Article  Google Scholar 

  • Semwal S, Arora AK, Badoni RP, Tuli DK (2011) Biodiesel production using heterogeneous catalysts. Bioresour Technol 102:2151–2161. doi:10.1016/j.biortech.2010.10.080

    Article  Google Scholar 

  • Singh Chouhan AP, Sarma AK (2011) Modern heterogeneous catalysts for biodiesel production: a comprehensive review. Renew Sustain Energy Rev 15:4378–4399. doi:10.1016/j.rser.2011.07.112

    Article  Google Scholar 

  • Shahid EM, Jamal Y (2011) Production of biodiesel: a technical review. Renew Sustain Energy Rev 15:4732–4745. doi:10.1016/j.rser.2011.07.079

    Article  Google Scholar 

  • Sharma YC, Singh B, Korstad J (2011a) Advancements in solid acid catalysts for ecofriendly and economically viable synthesis of biodiesel. Biofuels Bioprod Biorefin 5:69–92. doi:10.1002/bbb.253

    Article  Google Scholar 

  • Sharma YC, Singh B, Korstad J (2011b) Latest developments on application of heterogenous basic catalysts for an efficient and eco friendly synthesis of biodiesel: a review. Fuel 90:1309–1324. doi:10.1016/j.fuel.2010.10.015

    Article  Google Scholar 

  • Snare M, Maki-Arvela P, Simakova IL, Myllyoja J, Murzin DY (2009) Overview of catalytic methods for production of next generation biodiesel from natural oils and fats. Russian J Phys Chem B 3:1035–1043. doi:10.1134/S1990793109070021

    Article  Google Scholar 

  • Steinigeweg S, Gmehling J (2003) Esterification of a fatty acid by reactive distillation. Ind Eng Chem Res 42:3612–3619. doi:10.1021/ie020925i

    Article  Google Scholar 

  • Su EZ, Xu WQ, Gao KL, Zheng Y, Wei DZ (2007) Lipase-catalyzed in situ reactive extraction of oilseeds with short-chained alkyl acetates for fatty acid esters production. J Mol Catal B-Enzymatic 48:28–32. doi:10.1016/j.molcatb.2007.06.003

    Article  Google Scholar 

  • Su EZ, You PY, Wei DZ (2009) In situ lipase-catalyzed reactive extraction of oilseeds with short-chained dialkyl carbonates for biodiesel production. Bioresour Technol 100:5813–5817. doi:10.1016/j.biortech.2009.06.077

    Google Scholar 

  • van Gerpen J (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107. doi:10.1016/j.fuproc.2004.11.005

    Article  Google Scholar 

  • Verhoef MJ, Kooyman PJ, Peters JA, van Bekkum HA (1999) A study on the stability of MCM-41-supported heteropoly acids under liquid- and gas-phase esterification conditions. Microporous Mesoporous Mater 27:365–371. doi:10.1016/S1387-1811(98)00269-8

    Article  Google Scholar 

  • Vicente G, Martinez M, Aracil J (2004) Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour Technol 92:297–305. doi:10.1016/j.biortech.2003.08.014

    Article  Google Scholar 

  • Yadav GD, Nair JJ (1999) Sulfated zirconia and its modified versions as promising catalysts for industrial processes. Microporous Mesoporous Mater 33:1–48. doi:10.1016/S1387-1811(99)00147-X

    Article  Google Scholar 

  • Yan SL, DiMaggio C, Mohan S, Kim M, Salley SO, Ng KYS (2010) Advancements in heterogeneous catalysis for biodiesel synthesis. Top Catal 53:721–736. doi:10.1007/s11244-010-9460-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Alexandru Kiss .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Kiss, A.A. (2014). Biodiesel and Fatty Esters. In: Process Intensification Technologies for Biodiesel Production. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-03554-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03554-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03553-6

  • Online ISBN: 978-3-319-03554-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics