Skip to main content

Lifting and Transfer: A Modular Design for Quotients in Isabelle/HOL

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8307)

Abstract

Quotients, subtypes, and other forms of type abstraction are ubiquitous in formal reasoning with higher-order logic. Typically, users want to build a library of operations and theorems about an abstract type, but they want to write definitions and proofs in terms of a more concrete representation type, or “raw” type. Earlier work on the Isabelle Quotient package has yielded great progress in automation, but it still has many technical limitations.

We present an improved, modular design centered around two new packages: the Transfer package for proving theorems, and the Lifting package for defining constants. Our new design is simpler, applicable in more situations, and has more user-friendly automation.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-03545-1_9
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-03545-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coen, C.S.: A Semi-reflexive Tactic for (Sub-)Equational Reasoning. In: Filliâtre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) TYPES 2004. LNCS, vol. 3839, pp. 98–114. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  2. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data Refinement in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 100–115. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  3. Harrison, J.: Theorem Proving with the Real Numbers. Springer (1998)

    Google Scholar 

  4. Homeier, P.V.: A Design Structure for Higher Order Quotients. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 130–146. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  5. Kaliszyk, C., Urban, C.: Quotients revisited for Isabelle/HOL. In: Proc. of the 26th ACM Symposium on Applied Computing (SAC 2011), pp. 1639–1644. ACM (2011)

    Google Scholar 

  6. Krauss, A.: Simplifying Automated Data Refinement via Quotients. Tech. rep., TU München (2011), http://www21.in.tum.de/~krauss/papers/refinement.pdf

  7. Lammich, P.: Automatic data refinement. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 84–99. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  8. Magaud, N.: Changing data representation within the Coq system. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 87–102. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  9. Mitchell, J.C.: Representation Independence and Data Abstraction. In: POPL, pp. 263–276. ACM Press (January 1986)

    Google Scholar 

  10. Paulson, L.C.: Defining functions on equivalence classes. ACM Trans. Comput. Logic 7(4), 658–675 (2006)

    MathSciNet  CrossRef  Google Scholar 

  11. Reynolds, J.C.: Types, Abstraction and Parametric Polymorphism. In: IFIP Congress, pp. 513–523 (1983)

    Google Scholar 

  12. Slotosch, O.: Higher Order Quotients and their Implementation in Isabelle HOL. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 291–306. Springer, Heidelberg (1997)

    CrossRef  Google Scholar 

  13. Sozeau, M.: A New Look at Generalized Rewriting in Type Theory. In: 1st Coq Workshop Proceedings (2009)

    Google Scholar 

  14. Wadler, P.: Theorems for free! In: Functional Programming Languages and Computer Architecture, pp. 347–359. ACM Press (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Huffman, B., Kunčar, O. (2013). Lifting and Transfer: A Modular Design for Quotients in Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds) Certified Programs and Proofs. CPP 2013. Lecture Notes in Computer Science, vol 8307. Springer, Cham. https://doi.org/10.1007/978-3-319-03545-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03545-1_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03544-4

  • Online ISBN: 978-3-319-03545-1

  • eBook Packages: Computer ScienceComputer Science (R0)