Skip to main content

A Spatial Preferential Attachment Model with Local Clustering

  • Conference paper
Algorithms and Models for the Web Graph (WAW 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8305))

Included in the following conference series:

Abstract

A class of growing networks is introduced in which new nodes are given a spatial position and are connected to existing nodes with a probability mechanism favouring short distances and high degrees. The competition of preferential attachment and spatial clustering gives this model a range of interesting properties. Most notably, empirical degree distributions converge to a limit law, which can be a power law with any exponent τ > 2, and the average clustering coefficient converges to a positive limit. Our main tool to show these and other results is a weak law of large numbers in the spirit of Penrose and Yukich, which can be applied thanks to a novel rescaling idea. We also conjecture that the networks have a robust giant component if τ is sufficiently small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aiello, W., Bonato, A., Cooper, C., Janssen, J., Prałat, P.: A spatial web graph model with local influence regions. Internet Mathematics 5, 175–196 (2009)

    Article  Google Scholar 

  2. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Modern Phys. 74, 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  4. Berger, N., Borgs, C., Chayes, J., Saberi, A.: Asymptotic behavior and distributional limits of preferential attachment graphs. Ann. Prob. (to appear, 2013)

    Google Scholar 

  5. Bloznelis, M.: Degree and clustering coefficient in sparse random intersection graphs. Ann. Appl. Prob. 23, 1254–1289 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bollobás, B., Riordan, O.M.: Mathematical results on scale-free random graphs. In: Handbook of Graphs and Networks, pp. 1–34. Wiley-VCH, Weinheim (2003)

    Google Scholar 

  7. Bonato, A., Janssen, J., Pralat, P.: Geometric protean graphs. Internet Mathematics 8, 2–28 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cooper, C., Frieze, A., Prałat, P.: Some typical properties of the spatial preferred attachment model. In: Bonato, A., Janssen, J. (eds.) WAW 2012. LNCS, vol. 7323, pp. 29–40. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Dereich, S., Mörters, P.: Random networks with sublinear preferential attachment: degree evolutions. Electron. J. Probab. 14(43), 1222–1267 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Dereich, S., Mörters, P.: Random networks with concave preferential attachment rule. Jahresber. Dtsch. Math.-Ver. 113, 21–40 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dereich, S., Mörters, P.: Random networks with sublinear preferential attachment: the giant component. Ann. Prob. 41, 329–384 (2013)

    Article  MATH  Google Scholar 

  12. Flaxman, A.D., Frieze, A.M., Vera, J.: A geometric preferential attachment model of networks. Internet Math. 3, 187–205 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Flaxman, A.D., Frieze, A.M., Vera, J.: A geometric preferential attachment model of networks II. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp. 41–55. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Jacob, E., Mörters, P.: Spatial preferential attachment networks: Power laws and clustering coefficients. arXiv:1210.3830 (2012)

    Google Scholar 

  15. Janssen, J., Pralat, P., Wilson, R.: Geometric graph properties of the spatial preferred attachment model. Adv. Appl. Math. 50, 243–267 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jordan, J.: Degree sequences of geometric preferential attachment graphs. Adv. in Appl. Probab. 42, 319–330 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Meester, R., Roy, R.: Continuum percolation. Cambridge Tracts in Mathematics, vol. 119. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  18. Penrose, M.: Random geometric graphs. Oxford Studies in Probability, vol. 5. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  19. Penrose, M.D., Yukich, J.E.: Weak laws of large numbers in geometric probability. Ann. Appl. Probab. 13, 277–303 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rudas, A., Tóth, B., Valkó, B.: Random trees and general branching processes. Random Structures Algorithms 31, 186–202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Jacob, E., Mörters, P. (2013). A Spatial Preferential Attachment Model with Local Clustering. In: Bonato, A., Mitzenmacher, M., Prałat, P. (eds) Algorithms and Models for the Web Graph. WAW 2013. Lecture Notes in Computer Science, vol 8305. Springer, Cham. https://doi.org/10.1007/978-3-319-03536-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03536-9_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03535-2

  • Online ISBN: 978-3-319-03536-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics